Sovereign swaps and sovereign default

Fundamental versus confidence risk

Mark Aguiar¹ Manuel Amador²

¹Princeton University

²University of Minnesota and Minneapolis Fed (standard disclaimer applies)

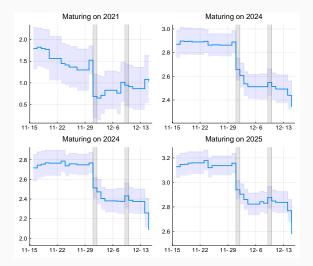
Intro

- Countries manage their debt portfolio
 - Issue bonds of different maturities
 - Buy back bonds
 - Swap bonds
- Sovereign debt models (going back to Bulow-Rogoff):
 - Maturity management via secondary markets is costly and a bad idea when default risk is high

Dominican Republic December 2020 Swap

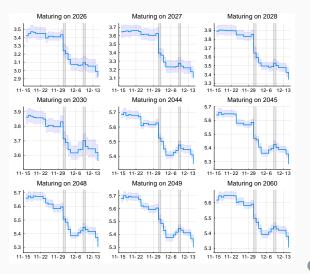
- December 1st:
 - DR offers to buy back its short-term USD bond stock
 - Offer contingent on long-term issuance on Dec 8
- \bullet Involved 15% of the external bond stock
 - (Total external bond stock is 23% of GDP)
- No current resources used: zero-cost trade

Effect on yields: Bonds bought back



Effect on yields: Bond issued

Effect on yields: All other bonds



yield curve

Summary of example

- Unexpected
- All bond yields decreased on announcement Including the bond to be issued
- Outcome:
 - Retired 85% of principal due in 2021
 - 40% of principal due in 2024
 - 15% of principal due in 2025

Questions

- Was this swap a good idea?
 - Standard sovereign debt models would say no

Questions

- Was this swap a good idea?
 - Standard sovereign debt models would say no
- Revisit this question

Swaps

- Informative about fundamental vs confidence risk
- Re-evaluate their benefit

Model

Environment

- Based on Aguiar-Amador-Hopenhayn-Werning (2019)
- Small open economy model
 - Discrete time $t = 0, 1, \ldots$
- Domestic government:
 - Constant endowment (one good): y
 - Utility flows: u(c)
 - Discount: β
- Foreign markets:
 - Risk-neutral, atomistic, discount R = 1 + r
- Assumption (not key): $\beta R = 1$

Asset market structure

- Government debt's portfolio composed of two assets:
- Perpetuity, *b*_L:
 - Promises to pay r every period
 - Price q_L

Asset market structure

- Government debt's portfolio composed of two assets:
- Perpetuity, *b*_L:
 - Promises to pay r every period
 - Price q_L
- One-period bond, *b_S*:
 - Promises to pay R next period
 - Price qs
- Both prices = 1 without default risk

Government inherits portfolio (b_S^0, b_L^0)

No long bond issuances

Assumption: Government issues only b_S

Note: this is without loss with only fundamental risk

Government budget constraint (no default):

$$c = y - rb_L - Rb_S + q_Sb'_S$$

where b'_{S} new stock of bonds

Government budget constraint (no default):

$$c = y - rb_L - Rb_S + q_Sb'_S$$

where b'_{S} new stock of bonds

Note: Long-term bond price is irrelevant

$V(b_S, b_L)$: Repayment value function

In case of a government default:

- Foreigners receive a payoff of 0
- Government receives outside value V^d

 $V(b_S, b_L)$: Repayment value function

In case of a government default:

- Foreigners receive a payoff of 0
- Government receives outside value V^d

Two sources of default risk: Fundamental and Confidence

Fundamental risk

Fundamental risk

• Prob
$$1 - \lambda$$
: $V^d = \underline{V}$

• Prob λ : $V^d \in [\underline{V}, \overline{V}]$ is drawn i.i.d. F(.)

Government defaults if $V(b_S, b_L) < V^d$

Fundamental risk

Fundamental risk

• Prob
$$1 - \lambda$$
: $V^d = \underline{V}$

• Prob λ : $V^d \in [\underline{V}, \overline{V}]$ is drawn i.i.d. F(.)

Government defaults if $V(b_S, b_L) < V^d$

Default probability:

$$\lambda \times (1 - F(V(b_S, b_L)))$$

Confidence risk (Cole-Kehoe)

• Prob η : lenders refuse to roll over bonds

Government defaults if:

$$u(y - rb_L - Rb_S) + \beta \mathbb{E} V(\mathbf{0}, b_L) < \underline{V}$$
(1)

Confidence risk (Cole-Kehoe)

• Prob η : lenders refuse to roll over bonds

Government defaults if:

$$u(y - rb_L - Rb_S) + \beta \mathbb{E} V(\mathbf{0}, b_L) < \underline{V}$$
(1)

Default probability:

 $\eta \times \mathbb{1}\{(b_S, b_L) \in C\}$

 $C: (b_S, b_L)$ such that (1) holds

Confidence risk (Cole-Kehoe)

• Prob $\eta:$ lenders refuse to roll over bonds

Government defaults if:

$$u(y - rb_L - Rb_S) + \beta \mathbb{E}V(\mathbf{0}, b_L) < \underline{V}$$
(1)

Default probability:

$$\eta \times \mathbb{1}\{(b_S, b_L) \in C\}$$

 $C: (b_S, b_L)$ such that (1) holds

(ignoring $\eta \times \lambda$)

$$V(b_{S}, b_{L}) = \max_{b'_{S}} \left\{ u(c) + \beta \left[(1 - \lambda(1 - F(\tilde{V})) - \eta \mathbb{1}_{(b'_{S}, b_{L}) \in C}) \tilde{V} + \lambda \int_{\tilde{V}}^{\overline{V}} v^{d} dF(v^{d}) + \eta \mathbb{1}_{(b'_{S}, b_{L}) \in C} \underline{V} \right] \right\}$$
subject to:

$$c = y - rb_L - Rb_S + q_s(b'_S, b_L)b'_S$$

 $ilde{V} = V(b'_S, b_L)$

 \mathcal{B}_{S} : an optimal policy

One period bond price:

$$q_{S}(b_{S}, b_{L}) = 1 - \underbrace{\lambda(1 - F(V(b_{S}, b_{L})))}_{\text{fundamental}} - \underbrace{\eta \mathbb{1}_{(b_{S}, b_{L}) \in C}}_{\text{confidence}}$$

Note: function of both value and portfolio (capturing the two risks)

Markov Equilibrium

 V, q_S, C such that (i) government optimizes, (ii) C is defined by (1), and (iii) pricing equation holds

Given an equilibrium (and a corresponding \mathcal{B}_S) $\Rightarrow q_L$ is a fixed point:

$$q_L(b_S, b_L) = q_S(b_S, b_L) \frac{r + q_L(\mathcal{B}_S(b_S, b_L), b_L)}{R}$$

Represents the secondary market price of the long bond

Zero-cost trades

Let V, q_S, C be an equilibrium

Suppose government has just issued to b_S^A, b_L^A , then

Zero-cost trade: (b_S^B, b_L^B) such that

$$q_S^B b_S^B + q_L^B b_L^B = q_S^B b_S^A + q_L^B b_L^A$$

where

$$q^B_S = q_S(b^B_S, b^B_L), \qquad q^B_L = q_L(b^B_S, b^B_L)$$

 \Rightarrow Market value at ex-post prices is unchanged

Does not affect current consumption

But changes continuation value:

$$\mathbb{E}V(b_{S}^{B}, b_{L}^{B}) = \left[1 - \lambda(1 - F(\tilde{V})) - \eta \mathbb{1}_{(b_{S}^{B}, b_{L}^{B}) \in C}\right]\tilde{V} + \lambda \int_{\tilde{V}}^{\tilde{V}} v^{d} dF(v^{d}) + \eta \mathbb{1}_{(b_{S}^{B}, b_{L}^{B}) \in C} \underline{V}$$

where $\tilde{V} = V(b_S^B, b_L^B)$

The fundamental case

Consider $\eta = 0$ (no confidence risk)

AAHW:

- Govt does not trade long-term bonds
- Zero-cost trades reduce government's utility

Consider $\eta = 0$ (no confidence risk)

AAHW:

- Govt does not trade long-term bonds
- Zero-cost trades reduce government's utility

Convexity of the value function $+ \mbox{ envelope condition}$

$$V(b_S^A, b_L^A) = v_A$$

Dual:

$$Rb_{S}^{A} = \max_{\{c_{t}, v_{t}, \Gamma_{t}\}} \left\{ \begin{array}{c} y - rb_{L}^{A} - c_{1} + \\ + \Gamma_{1}(y - rb_{L}^{A} - c_{2}) \\ + \Gamma_{2}(y - rb_{L}^{A} - c_{3}) + \dots \end{array} \right\}$$

subject to:

$$v_t = U(c_t, c_{t+1}, \dots)$$
 with $v_0 = v_A$
 $\Gamma_t = \Gamma_{t-1}(1 - \lambda(1 - F(v_t)))/R$

$$V(b_S^A, b_L^A) = v_A$$

Dual:

Budget constraint

$$Rb_{S}^{A} = \max_{\{c_{t}, v_{t}, \Gamma_{t}\}} \left\{ \begin{array}{c} y - rb_{L}^{A} - c_{1} + \\ + \Gamma_{1}(y - rb_{L}^{A} - c_{2}) \\ + \Gamma_{2}(y - rb_{L}^{A} - c_{3}) + \dots \end{array} \right\}$$

subject to:

$$v_t = U(c_t, c_{t+1}, \dots)$$
 with $v_0 = v_A$
 $\Gamma_t = \Gamma_{t-1}(1 - \lambda(1 - F(v_t)))/R$

$$V(b_S^A, b_L^A) = v_A$$

Dual:

$$Rb_{S}^{A} = \max_{\{c_{t}, v_{t}, \Gamma_{t}\}} \left\{ \begin{array}{c} y - rb_{L}^{A} - c_{1} + \\ + \Gamma_{1}(y - rb_{L}^{A} - c_{2}) \\ + \Gamma_{2}(y - rb_{L}^{A} - c_{3}) + \dots \end{array} \right\}$$

subject to: $\begin{aligned}
\text{utility} - \mathsf{PK} \\
\mathbf{v}_t &= U(c_t, c_{t+1}, \dots) \text{ with } v_0 = v_A \\
\Gamma_t &= \Gamma_{t-1}(1 - \lambda(1 - F(v_t)))/R
\end{aligned}$

$$V(b_S^A, b_L^A) = v_A$$

Dual:

$$Rb_{S}^{A} = \max_{\{c_{t}, v_{t}, \Gamma_{t}\}} \left\{ \begin{array}{c} y - rb_{L}^{A} - c_{1} + \\ + \Gamma_{1}(y - rb_{L}^{A} - c_{2}) \\ + \Gamma_{2}(y - rb_{L}^{A} - c_{3}) + \dots \end{array} \right\}$$

subject to:

$$v_t = U(c_t, c_{t+1}, ...)$$
 with $v_0 = v_A$
 $\Gamma_t = \Gamma_{t-1}(1 - \lambda(1 - F(v_t)))/R$
survival probability (discounted

$$V(b_S^A, b_L^A) = v_A$$
 $= (r + q_L^{A,1})b_L^A$
Dual:

$$Rb_{S}^{A} = \max_{\{c_{t}, v_{t}, \Gamma_{t}\}} \left\{ \begin{array}{c} y - rb_{L}^{A} - c_{1} + \\ + \Gamma_{1}(y - rb_{L}^{A} - c_{2}) \\ + \Gamma_{2}(y - rb_{L}^{A} - c_{3}) + \dots \end{array} \right\}$$

subject to:

$$v_t = U(c_t, c_{t+1}, \dots)$$
 with $v_0 = v_A$
 $\Gamma_t = \Gamma_{t-1}(1 - \lambda(1 - F(v_t)))/R$

For
$$V(b_{S}^{A}, b_{L}^{A}) = V(b_{S}^{B}, b_{L}^{B}) = v_{A}$$
:

$$Rb_S^B \geq Rb_S^A - (r + q_L^{A,1})(b_L^A - b_L^B)$$

For
$$V(b_{S}^{A}, b_{L}^{A}) = V(b_{S}^{B}, b_{L}^{B}) = v_{A}$$
:
 $Rb_{S}^{B} \ge Rb_{S}^{A} - (r + q_{L}^{A,1})(b_{L}^{A} - b_{L}^{B})$

Ex-ante value is given by repayment value:

$$\mathbb{E}\mathbf{v} = (1 - \lambda(1 - F(\mathbf{v}_A)))\mathbf{v}_A + \lambda \int_{\mathbf{v}_A}^{\overline{V}} \mathbf{v}^d dF(\mathbf{v}^d)$$

For
$$V(b_{S}^{A}, b_{L}^{A}) = V(b_{S}^{B}, b_{L}^{B}) = v_{A}$$
:
 $Rb_{S}^{B} \ge Rb_{S}^{A} - (r + q_{L}^{A,1})(b_{L}^{A} - b_{L}^{B})$

Ex-ante value is given by repayment value:

$$\mathbb{E}\mathbf{v} = (1 - \lambda(1 - F(\mathbf{v}_A)))\mathbf{v}_A + \lambda \int_{\mathbf{v}_A}^{\overline{V}} \mathbf{v}^d dF(\mathbf{v}^d)$$

and prices are the tangent:

$$-\frac{r+q_L^{A,1}}{R}$$

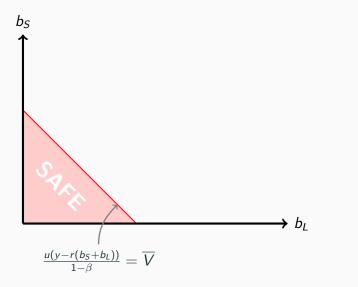
For
$$V(b_{S}^{A}, b_{L}^{A}) = V(b_{S}^{B}, b_{L}^{B}) = v_{A}$$
:
 $Rb_{S}^{B} \ge Rb_{S}^{A} - (r + q_{L}^{A,1})(b_{L}^{A} - b_{L}^{B})$

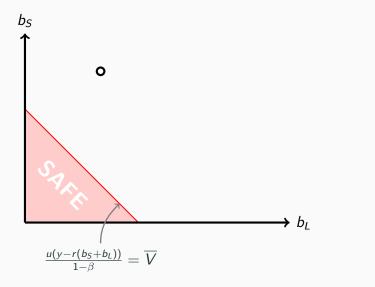
Ex-ante value is given by repayment value:

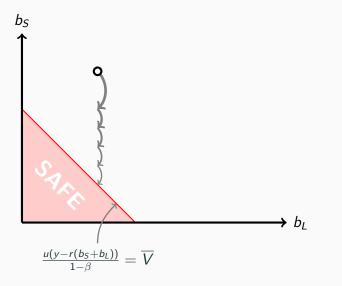
$$\mathbb{E}\mathbf{v} = (1 - \lambda(1 - F(\mathbf{v}_A)))\mathbf{v}_A + \lambda \int_{\mathbf{v}_A}^{\overline{\mathbf{v}}} \mathbf{v}^d dF(\mathbf{v}^d)$$

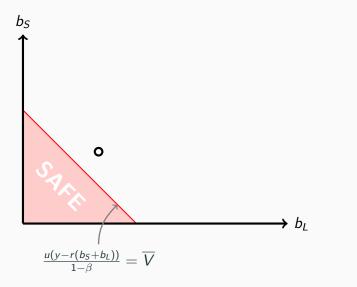
and prices are the tangent:

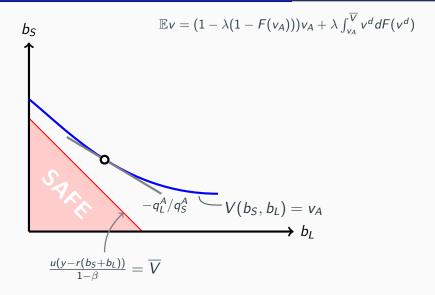
$$-\frac{r+q_L^{A,1}}{R} = -\frac{(1-\lambda(1-F(v)))(r+q_L^{A,1})/R}{(1-\lambda(1-F(v))))} = -\frac{q_L^A}{q_S^A}$$

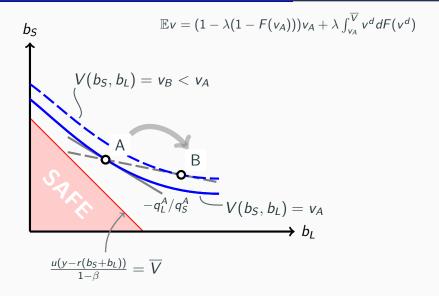


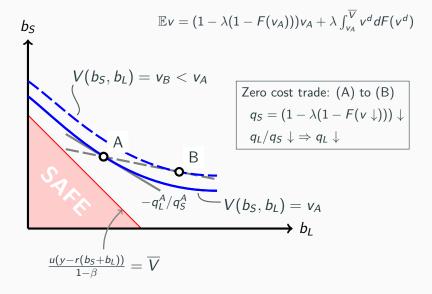












Results for fundamental shocks

1. Impossibility result

No zero-cost trade can increase the price of the one-period bond

Result 1 is general – holds for finite/infinite horizons, non-separable u, and arbitrary maturity structures!

Results for fundamental shocks

1. Impossibility result

No zero-cost trade can increase the price of the one-period bond

2. Maturity extension

A zero-cost trade that increases maturity lowers the long-term bond price

Result 1 is general – holds for finite/infinite horizons, non-separable u, and arbitrary maturity structures!

With only fundamental shocks:

- Debt swaps are a bad idea
- And some prices necessary decrease after a swap:
 - One-period bond price decreases
 - Long-term price decreases if maturity extended

With only fundamental shocks:

- Debt swaps are a bad idea
- And some prices necessary decrease after a swap:
 - One-period bond price decreases
 - Long-term price decreases if maturity extended

We cannot explain DR's swap with only fundamental shocks

The case with confidence crises

Suppose now that $\lambda = 0$ (no fundamental shocks) But $\eta > 0$ The confidence crisis induces a default even when

 $V(b_S, b_L) > V^d$

More crucially, maturity determines exposure to risk (Dual approach above fails)

Confidence crises

Exploiting $\beta R = 1$:

$$V(b_S, b_L) \leq \underbrace{ rac{u(y - r(b_S + b_L))}{1 - eta}}_{ ext{first best}}$$

Confidence crises

Exploiting $\beta R = 1$:

$$V(b_S, b_L) \leq \underbrace{ rac{u(y - r(b_S + b_L))}{1 - eta}}_{ ext{first best}}$$

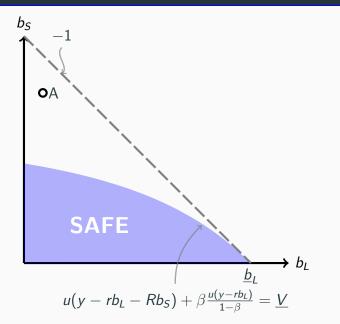
With $b_S = 0$, first best is attainable as long as:

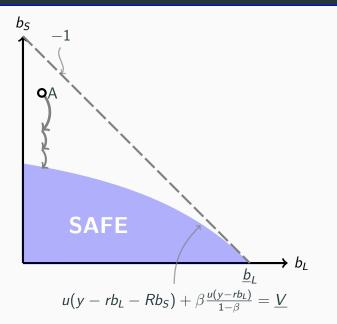
$$V(0, b_L) = \frac{u(y - rb_L)}{1 - \beta} \geq \underline{V}$$

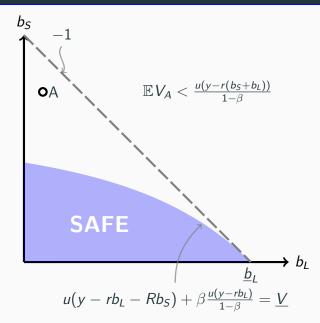
Let \underline{b}_L be the threshold

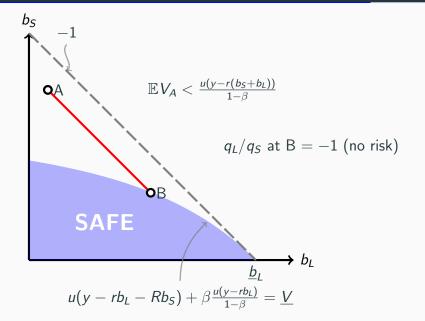
Consider
$$(b_S, b_L) \in C$$
 with $b_S + b_L \leq \underline{b}_L$. Then
 $\mathbb{E}V(b_S, b_L) = \eta \underline{V} + (1 - \eta)V(b_S, b_L) < \frac{u(y - r(b_S + b_L))}{1 - \beta}$

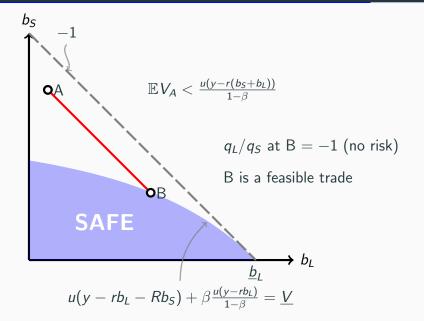
(not indifferent when defaulting!)

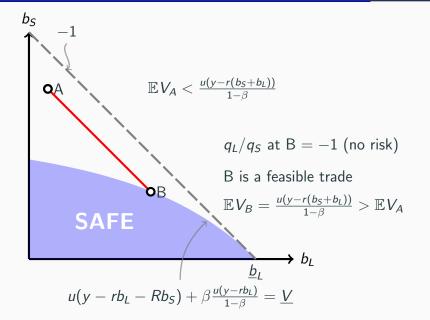












Confidence crises: The benefits of swaps

Let
$$(b_S^A, b_L^A) \in C$$
 with $b_S^A + b_L^A < \underline{b}_L$
Then exists a zero-cost trade to (b_S^B, b_L^B) with $b_L^B > b_L^A$,
 $q_S^B = q_L^B = 1$ and
 $\mathbb{E}V(b_S^B, b_L^B) > \mathbb{E}V(b_S^A, b_L^A)$

Note that
$$(b_S^A, b_L^A) \in \mathcal{C} \Rightarrow q_S^A < 1$$
 and $q_L^A < 1$

There is a swap that extends maturity, raises all prices, and increases welfare

But extreme in this case (all risk goes away)

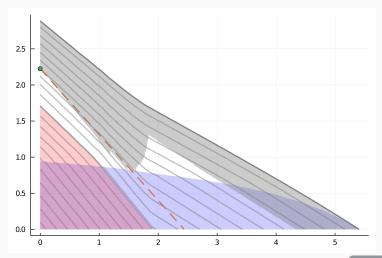
The two risks together

Two shocks $\eta > 0$ and $\lambda > 0$

Assume mass point:

$$F(v^d) = egin{cases} 0 & ; v^d < \overline{V} \ 1 & ; ext{otherwise} \end{cases}$$

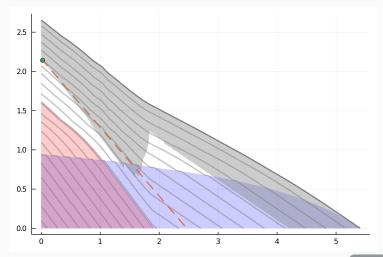
Simulation result: Case 1



sim details

Simulation result: Case 2

Higher η



sim details

- As η increases \Rightarrow : maturity extending swaps become useful
- We haven't found a case where maturity reduction is beneficial

Conclusion

Swaps are informative about the nature of shocks

- Increase in all prices consistent with confidence (roll-over) risk having a major role
- When confidence risk is major concern \Rightarrow Swaps can be a good idea

Conclusion

Next steps:

- Quantify/decompose the risks?
- In process: collecting more data on swaps

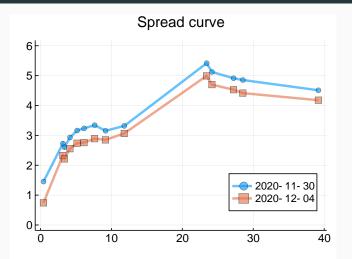
Missing elements:

- Hedging fundamental shocks
- Variation in risk premia
- Preferred Habitat / Liquidity
- Signaling Asymmetric Information

Thank you!

Backup slides

Spread curve



◀ back

Simualtion details

$$egin{aligned} & \underline{V} = rac{u(y(1-\overline{ au}))}{1-eta} \ & \overline{V} = rac{u(y(1-\overline{ au}))}{1-eta} \end{aligned}$$

Case 1:

$$u = \log, \beta = 0.95, \overline{\tau} = 0.2, \underline{\tau} = 0.1, \lambda = 0.05, \eta = 0.01$$

Case 2:

 $u = \log, \beta = 0.95, \bar{\tau} = 0.2, \underline{\tau} = 0.1, \lambda = 0.05, \eta = 0.03$

back