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Self-Fulfilling Debt Dilution: Maturity and Multiplicity  
in Debt Models†

By Mark Aguiar and Manuel Amador*

We establish that creditor beliefs regarding future borrowing can 
be self-fulfilling, leading to multiple equilibria with markedly dif-
ferent debt accumulation patterns. We characterize such indetermi-
nacy in the Eaton-Gersovitz sovereign debt model augmented with 
long maturity bonds. Two necessary conditions for the multiplicity 
are (i) the government is more impatient than foreign creditors, and 
(ii)  there are deadweight losses from default. The multiplicity is 
dynamic and stems from the self-fulfilling beliefs of how future cred-
itors will price bonds; long maturity bonds are therefore a crucial 
component of the multiplicity. We introduce a third party with deep 
pockets to discuss the policy implications of this source of multiplic-
ity and identify the potentially perverse consequences of traditional 
“lender of last resort” policies. (JEL E44, E62, F34, H63, G12)

The recent sovereign debt crisis in Europe, along with the associated policy 
responses, underscores the importance of self-fulfilling debt crises. We introduce 
and analytically solve a tractable version of the canonical Eaton and Gersovitz 
(1981) sovereign debt model with long duration bonds and study the vulnerability 
to self-fulfilling debt crises. The Eaton-Gersovitz model, enhanced to incorporate 
long-term bonds, has become the workhorse paradigm for a large quantitative liter-
ature that has successfully explained key empirical features of sovereign default.1 
However, due to the intractability of the model, it is not known whether and under 
what circumstances this environment generates self-fulfilling debt crises.2 This is a 
major shortcoming, as long-term bonds are the primary source of government financ-
ing around the world. Moreover, they play a key role in bringing the quantitative 

1 Examples, among many others, are Aguiar and Gopinath (2006); Arellano (2008); Yue (2010); Hatchondo 
and Martinez (2009); Mendoza and Yue (2012); Chatterjee and Eyigungor (2012); Arellano and Ramanarayanan 
(2012); and Bianchi, Hatchondo, and Martinez (2018). See Aguiar and Amador (2014) for a survey.

2 In a recent contribution, Auclert and Rognlie (2016) shows that the Eaton-Gersovitz model with one-period 
bonds features a unique equilibrium, but their arguments do not extend to long-term bonds. See also Aguiar and 
Amador (2019). 
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sovereign debt models closer to the data, in large part due to the inherent incentive 
to dilute bondholders. We establish that the same force generates multiplicity.

Our analysis introduces a tractable version of the Eaton-Gersovitz model for 
which we solve for equilibrium objects explicitly. We show that as long as the gov-
ernment is relatively impatient and there are deadweight costs to default, there is 
a parameter configuration and a maturity of debt that supports multiple equilibria.

The multiplicity is dynamic. Creditor expectations of future borrowing and default 
behavior determine bond prices today. In turn, current and anticipated bond prices 
affect the government’s incentives to borrow. To shed light on this feedback mech-
anism, we characterize two types of equilibria with markedly different debt dynam-
ics. In a “borrowing” equilibrium, the government issues bonds until it reaches an 
endogenous debt limit. In a “saving” equilibrium, the government reduces its stock 
of debt until default no longer occurs with positive probability. The tension at work 
in both equilibria is the relative impatience of the government and the deadweight 
costs of default.

The government saves in order to enjoy high prices when it rolls over the remain-
ing debt in the future. However, this incentive is only operable if there is a dead-
weight loss in default; as prices are actuarially fair in any equilibrium, they do not 
provide an incentive to save when default is zero sum.3 Hence, the combination of 
deadweight costs and the need to roll over maturing debt provides the foundation 
for the saving equilibrium.

The government’s relative impatience provides a countervailing force that sup-
ports the borrowing equilibrium. In the borrowing equilibrium, creditors anticipate 
future borrowing going forward (that is, “debt dilution”), and prices are low regard-
less of the current level of indebtedness. In this equilibrium, there is no reward for 
keeping debt low due to creditor beliefs about future debt dynamics. Hence, whether 
relative impatience or deadweight costs of default are the dominant force in deter-
mining debt dynamics depends on creditor beliefs.

Maturity plays a key role in this indeterminacy, which arises only when debt 
is of intermediate maturity. When maturity is sufficiently long, the saving equilib-
rium cannot be supported, as the amount of debt to be rolled over at high prices is 
too small to warrant saving. In particular, as the probability of default is reduced, 
the gain from the reduction in the deadweight costs of default is split between the 
government, which is issuing new debt at high prices, and holders of nonmaturing 
bonds, who enjoy a capital gain. As the latter component is irrelevant for the govern-
ment’s decision to save, longer maturity bonds eliminate the government’s incentive 
to save.

Conversely, at very short maturities, the government internalizes the gains from 
reducing the probability of default. In fact, we show that as maturity becomes arbi-
trarily short, the government’s fiscal policy approaches what would be chosen in a 
constrained efficient contract between the lenders and the government, as in Aguiar 
et al. (2018). In this case, the borrowing equilibrium becomes impossible to sustain 

3 While lenders receive zero in the default state, a deadweight cost implies the government’s value is strictly less 
than that associated with zero debt. Competitive bond markets imply that creditors are compensated in expectation 
for the full loss, while the government does not reap the same expected gain. This provides the government with an 
incentive to reduce the probability of default.
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without a high degree of relative impatience or zero deadweight costs. For inter-
mediate values of maturity, impatience, and deadweight costs, either equilibrium 
can be sustained.

We show that this multiplicity has novel implications for the design of third-party 
programs to eliminate inefficient equilibria. Common prescriptions motivated by 
rollover crisis intuition, such as price floors or emergency lending when spreads are 
high, may have the perverse outcome of eliminating the preferred equilibrium in the 
Eaton-Gersovitz model. In our framework, a floor on prices does not eliminate the 
borrowing equilibrium; in fact, it may eliminate the saving equilibrium and select 
the borrowing equilibrium. The saving equilibrium requires a steep gradient in 
prices across the domain of debt to incentivize saving (or prevent dilution). A price 
floor that extends across a wide range of debt levels eliminates this important feature 
of the saving equilibrium. A more effective policy to prevent borrowing would be to 
either limit debt explicitly or promise a price floor conditional on remaining within 
an exogenous bound on debt that is strictly tighter than the equilibrium debt limit. 
Such a policy would select the saving equilibrium and not require on-equilibrium 
resources. However, as with the lender of last resort, off-equilibrium credibility is 
key. The failure of such explicit debt limits in Europe (and traditional conditionality 
of the IMF) suggests that such credibility is difficult to establish in practice.4

The main analysis uses a tractable, continuous time model. Using a slightly mod-
ified version of Chatterjee and Eyigungor (2012)—henceforth, CE12—we also con-
firm that such multiplicity exists in the standard quantitative model. We adopt CE12’s 
framework largely unchanged, save for one modification to the endowment process. 
Specifically, motivated by the work of Barro and Ursúa (2008) and others, we add a 
rare-disaster state, in which the endowment falls sharply.5 The modified CE12 model 
features (at least) two equilibria at the calibrated expected maturity of 20 quarters. 
There is a “borrowing” equilibrium, in which the ergodic distribution features high 
debt and recurrent default, which has similar quantitative properties as the calibration 
reported in CE12. For the same parameterization, there is also a “saving” equilibrium, 
in which an indebted government saves in order to attain a risk-free price.

By varying the maturity, we successfully compute a saving equilibrium for matur-
ities ranging from 1 to 33 quarters. The borrowing equilibrium can be computed for 
maturities as short as 9 quarters. Thus, there is a significant range of empirically 
relevant maturities that support multiple equilibria. By varying the default cost in 
the disaster state, we use the quantitative model to explore the role of deadweight 
costs in generating multiplicity. For very low default costs, the one-period maturity 
version converges to a borrowing equilibrium and we were unable to compute a 
saving equilibrium. However, as we increase default costs, both a borrowing and a 
saving equilibrium can be supported.

These experiments reveal two lessons for quantitative sovereign debt models. 
One is that multiplicity is possible in such models for a wide range of empirically 
relevant maturities, as long as default costs are not too small. The second is that the 

4 Bocola and Dovis (2016) explores the efficacy of a price floor in a quantitative model of the European debt 
crisis. The policy they consider to rule out rollover crises similarly imposes a price floor combined with a debt limit. 

5 Ayres et al. (2015); Rebelo, Wang, and Yang (2019); and Paluszynski (2019) introduce rare disasters in a 
quantitative sovereign debt model. 
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practice of calibrating nonlinear default costs in order to match debt and default fre-
quencies in the data may naturally lead to environments in which an absorbing Safe 
Zone is not constrained efficient, and hence a saving equilibrium may be unlikely 
to exist. However, such low default costs are not directly tied to empirical evidence 
and this practice may provide an incomplete picture regarding the vulnerability to 
self-fulfilling dilution.

The recent literature exploring multiplicity has built on two canonical frame-
works, namely, the works of Calvo (1988) and Cole and Kehoe (2000). The Calvo 
multiplicity arises due to the feedback of prices to the budget set. This is easiest 
to see in a framework in which the government is forced to raise a certain amount 
of revenue from a bond auction. A low price (or high spread) for bonds forces the 
government to issue a greater quantity of debt in terms of face value. This raises 
the debt payments going forward, increasing the incentive to default, and there-
fore supporting the low price at auction. Conversely, a high price requires lower 
debt payments and thus may also be an equilibrium. Calvo-style multiplicity is 
studied in dynamic settings by Lorenzoni and Werning (2013) and Ayres et al. 
(2015).

Lorenzoni and Werning (2013) provides an antecedent to our paper by analyz-
ing the role of long-term bonds in dynamic settings with multiple equilibria. In an 
environment where the government follows a fiscal rule, they show how Calvo-style 
multiplicity arises and how longer debt maturity contributes toward uniqueness.6 
Closer to our current environment, they also discuss how multiplicity arises in a 
model where the government endogenously chooses its expenditures (rather than 
following a pre-specified rule), but faces constraints in its ability to reduce the defi-
cit when confronted by adverse bond prices. They uncover an equilibrium where 
the government saves and bond prices are high, as well as other equilibria where 
the government instead borrows and prices are low (when the debt is high enough). 
However, as we discuss in detail in Section VII, the mechanism we identify as gen-
erating multiplicity is distinct. Lorenzoni and Werning (2013) emphasizes the limits 
to fiscal discretion when bond prices are low. In contrast, we emphasize the absence 
of such limits. The fact that limited commitment to fiscal policy gives rise to mul-
tiplicity when the government issues bonds of intermediate maturities is the novel 
insight of our paper.

The Cole-Kehoe multiplicity is a “static” multiplicity. Specifically, holding future 
equilibrium behavior constant, the market clearing price for bonds is not deter-
mined. A high price for bonds allows the government to roll over its maturing debt. 
However, a zero price forces the government to repay all maturing bonds out of 
current endowment, making default optimal.7 This type of multiplicity has been 
extended recently by Aguiar et al. (2017) and explored quantitatively by Bocola 
and Dovis (2016). In our framework, the multiplicity is inherently dynamic in that 

6 In their benchmark model, they show that issuing longer maturities shrinks the region of multiplicity and helps 
select the “good” equilibrium, while the reverse is true in our analysis.

7 A related point on the possibility of a liquidity crisis in sovereign debt markets had been made by Sachs (1984) 
in a model with bank lending. Defaulting because of the inability to roll-over maturing debt generates coordination 
failures on the lenders side. Detragiache (1996) presents a related analysis of how investment can also generate 
multiple equilibria. In both of these papers, the multiplicity arises even with finite horizons. See also the recent 
work of Galli (2019). 
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future expectations over future equilibrium behavior are crucial in supporting the 
alternative equilibria. The Cole-Kehoe multiplicity emphasizes the vulnerability of 
short-maturity bonds to crises and favors lengthening maturity to avoid self-fulfilling 
crises. Our analysis shows that such lengthening opens up the economy to both inef-
ficiencies and a new form of multiplicity.

A recent paper, Stangebye (2018), shares our interest in multiplicity in a 
Eaton-Gersovitz framework. Stangebye computationally constructs a version in 
which there exists two Markov equilibria. Interestingly, Stangebye emphasizes con-
cavity of the utility function as crucial in supporting multiplicity. The multiplic-
ity we identify, on the other hand, exists whether the government is risk-neutral 
or has concave utility. In Section  VII, we discuss additional equilibria that arise 
with a lower bound on consumption, which may play the same role as concavity 
in Stangebye’s analysis. Nevertheless, given the common structure, there are many 
points of overlap in the nature of the multiplicity studied in the two independent 
papers, and we view our analysis as complementary to Stangebye’s.

The rest of the paper is as follows: Section I lays out our benchmark analytical 
model; Section II discusses efficient allocations from a benchmark planning prob-
lem; Section III contains the main analysis of the alternative equilibria; Section IV 
discusses the role of maturity in generating multiplicity; Section V explores how 
commonly proposed third-party policies may or may not select a particular equi-
librium; Section VI shows how the theoretical insights extend to the richer environ-
ments used in quantitative analysis; Section VII discusses the relationship with other 
sources of multiplicity; and Section VIII concludes. An online Appendix contains 
all the proofs.

I.  Environment

We study an infinite-horizon small open economy. Time is continuous and 
indexed by ​t​. The economy receives a constant flow endowment ​y​. Consumption 
and savings decisions for the economy are made by a government. The government 
has access to a noncontingent bond that it trades with atomistic, risk-neutral lenders. 
The lenders discount at the world risk-free interest rate ​R  = ​ (1 + r)​​. The small 
open economy assumption implies that ​R​ is invariant to the government’s borrowing 
or default decisions. Lenders have sufficient wealth as a group to hold an arbitrary 
quantity of bonds.

The asset space is restricted to a single type of bond. To incorporate maturity in 
a tractable manner, we follow Leland (1994), Hatchondo and Martinez (2009), and 
Chatterjee and Eyigungor (2012) by considering random maturity bonds. A bond 
matures with a constant hazard rate δ, at which point a payment of ​1​ is required. We 
assume that bonds mature independently such that a deterministic fraction δ of any 
portfolio of bonds matures each instant. The expected life span of a bond is ​1/δ​; 
hence, δ is a measure of (inverse) expected maturity. The advantage of this formula-
tion is that all bonds that have yet to mature are identical; in particular, they all have 
the same expected maturity going forward regardless of when they were issued.

We normalize the coupon of a bond to be the risk-free rate ​r​. That is, a bond pays 
a flow coupon ​r​ each instant through maturity. This implies that a risk-free bond has 
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price ​1​ in equilibrium, which serves as the upper bound on the price of the sover-
eign’s bond.

If the government misses a coupon or principal payment, it is in default. As in 
Aguiar et al. (2018), the value of default is a random variable and captures any pun-
ishment that can be imposed by creditors, including lost endowment, as well as any 
utility costs (or benefits) to the government from defaulting. Changes in the value of 
default represent the source of risk to creditors in our analysis.

We model the stochastic process for the default value as follows. The gov-
ernment almost always has the option to default and receive a payoff of  
​​V​​ D​​(t)​  = ​  V 

¯
 ​​. With constant arrival probability ​λ​, this default value temporarily 

increases to ​​V​​ D​​(t)​  = ​ V 
–
​  > ​  V 

¯
 ​​. The higher value represents an opportunity to default 

with lower consequences for punishment. If the government does not exercise this 
high default value option when it arrives, the default value returns to ​​ V 

¯
 ​​ until the next 

arrival of ​​V 
–
​​.

To define preferences, let ​c  = ​​ {c​(t)​}​​t≥0​​​ denote a deterministic consumption 
stream that characterizes the government’s consumption until default.8 We assume 
linear flow utility, ​u​(c)​  =  c​. This allows an explicit characterization of the equi-
librium objects while incorporating key economic forces that are robust to curva-
ture in utility. Consumption at each point in time is restricted to lie in the interval  
​​[​ C 
¯

 ​, ​C 
–
 ​]​​. Let ​C​ denote the space of consumption sequences with ​c​(t)​  ∈ ​ [​ C 

¯
 ​, ​C 

–
 ​]​​ for 

all ​t​.9

Given a consumption sequence ​c​, we define the government’s expected value as 
follows. Let ​T​ denote the time at which the government defaults, if ever, at the low 
outside default value. The value to the government of a consumption sequence ​c​,  
​V​(t, c)​​, is recursively defined by

(1) ​ V​(t, c)​  = ​ sup​ 
T≥t

​ ​​{​​[​∫ 
t
​ 
T
​​ ​e​​ −ρ​(s−t)​​ c​(s)​ ds + ​e​​ −ρ​(T−t)​​​ V 

¯
 ​]​ ​e​​ −λ​(T−t)​​​

� + ​∫ 
t
​ 
T
​​​[​∫ 

t
​ 
s
​​​e​​ −ρ​(τ−t)​​c​(τ)​ dτ + ​e​​ −ρ​(s−t)​​max⟨V​(s, c)​, ​V 

–
​⟩]​λ​e​​ −λ​(s−t)​​ ds}​​

	​ = ​ sup​ 
T≥t

​ ​​​{​​​∫ 
t
​ 
T
​​ ​e​​ −​(ρ+λ)​​(s−t)​​ c​(s)​ ds + ​e​​ −​(ρ+λ)​​(T−t)​​​ V 

¯
 ​

	 +​​​​ λ​∫ 
t
​ 
T
​​ ​e​​ −​(ρ+λ)​​(s−t)​​ max ⟨V​(s, c)​, ​V 

–
​⟩ ds​}​​.​​

The first line is the value absent the arrival of the high default outside option, where 
the probability that ​T​ is reached before the first arrival of the high outside option 
is ​​e​​ −λ​(T−t)​​​. The inner integral in the second term is the value conditional on the 
high outside option first arriving at time ​s  <  T​, which is then integrated over all 
possible ​s  ∈ ​ [t, T )​​. The second equality follows from straightforward integration. 
Standard methods verify that there is a unique bounded fixed point ​V​ that satisfies (1) 

8 The fact that ​c​(t)​​ is not indexed to the realization of ​​V​​ D​​ anticipates the fact that without contingent bonds, 
consumption will be deterministic conditional on no default. 

9 Given our restriction that ​c  ∈  ​[​ C 
¯

 ​, ​C 
–
 ​]​​, it would be equivalent to define ​u​ for the entire real line but set  

​u​(c)​  =  ​C 
–
 ​​ for ​c  ≥  ​C 

–
 ​​ and ​u​(c)​  =  − ∞​ for ​c  <  ​ C 

¯
 ​​.
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given ​c​. From (1), we have immediately that ​V​(t, c)​  ≥ ​  V 
¯

 ​​  for all ​t​ and ​c​, as ​T  =  t​ 
is always an option.

We make the following assumptions on the primitives of the environment.

ASSUMPTION 1: (i) ρ ≥ r; (ii) y ≥ ρ​​V 
–
​​; (iii) ​​C 

–
 ​​ > y; (iv) ​​ C _ ​​ < (ρ + ​λ​)​​ V _ ​​ − ​λ​​​ 

_
 V ​​.

The first item ensures that the government is relatively impatient (as compared to the 
market interest rate) and does not accumulate infinite assets. The second states that 
consuming the endowment forever is weakly greater than the high default value. If ​​
V 
–
​​ were strictly greater than this value, the government may prefer default to holding a 

small amount of assets. When ​y >  ρ​V 
–
​​, there is a deadweight loss in default; in partic-

ular, from the lenders’ perspective, all debt is zeroed out once default occurs, but the 
government receives a value that is strictly less than full debt forgiveness. In the orig-
inal Eaton and Gersovitz (1981), this difference reflected the loss of insurance. In the 
recent quantitative literature starting with Aguiar and Gopinath (2006) and Arellano 
(2008), an additional endowment cost is imposed during default. In the current envi-
ronment, the gap ​y − ρ​V 

–
​​ makes default inefficient (in terms of joint borrower-lender 

surplus) and will play an important role in equilibrium debt dynamics. The third con-
dition ensures that consuming the endowment is always feasible. The final condition 
guarantees that it is feasible to deliver the low default value to the government, ​​ V 

¯
 ​​, by 

assigning it a sufficiently low consumption level and letting the government default 
once ​​V​​ D​​(t)​ = ​ V 

–
​​. That is, ​​ V 

¯
 ​​ is feasible without requiring an immediate default.

Some of the assumptions above were made to obtain tractability and build on 
earlier work in this literature.10 However, as we will see in Section VI the underly-
ing economics are robust to the inclusion of endowment risk, concave utility, and 
discrete time.

II.  Constrained Efficient Allocations

We first study an efficient allocation that maximizes the joint surplus between a 
risk-neutral lender and the government subject to the government’s lack of commit-
ment to repay. The efficient allocations provide a useful benchmark to understand 
the competitive equilibria studied in the next section.

Consider a Pareto planning problem that maximizes the expected payments to 
a risk-neutral lender conditional on delivering a value weakly greater than ​v​ to the 
government. As in Aguiar et al. (2018), the planning problem chooses a consump-
tion stream ​c​, but the planner cannot prevent the government from defaulting when 
the government finds it optimal to do so. In particular, for consumption sequence ​c​, 
the government’s value is defined by (1). When the government is indifferent to 
default or continuing, the planner can break the tie.

Given an allocation ​c​ and time ​T​ that maximizes (1) at time ​t  =  0​, the expected 
payments to the lender can be defined as

10 For continuous time formulations of sovereign debt models with Poisson shocks that trigger default, see 
Aguiar et al. (2013); Lorenzoni and Werning (2013); and Bornstein (2018). For Brownian motion shocks, see Nuño 
and Thomas (2015); Tourre (2017); and DeMarzo, He, and Tourre (2018). The latter two also discuss how linear 
utility (in their cases without consumption bounds) facilitates finding closed-form solutions. See also Carré, Cohen, 
and Villemot (2019) for Lévy processes.
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(2)	​ P​(c, T)​  = ​ ∫ 
0
​ 
T
​​​e​​ −​∫ 

0
​ 
t
​​r+​1​​[V​(s,c)​<​V 

–
​]​​​λds​​[y − c​(t)​]​ dt,​

where ​​1​​[x]​​​​ is an indicator function that takes value 1 if ​x​ is true and 0 otherwise. The 
integrand represents the flow payments to the lender, which are discounted by ​r​ 
and the probability of default prior to period ​T​. Here we have incorporated that the 
government does not default when indifferent upon the arrival of the high default 
value, which is without loss given that we will focus on Pareto efficient allocations.

DEFINITION 1: An allocation ​​{𝐜, T}​​ is efficient if ​T​ maximizes (1) at ​t  =  0​ given  
​𝐜​, and if there is no alternative allocation ​​(​𝐜̃  ​, ​T ̃ ​)​​ such that ​V​(0, ​𝐜̃  ​)​  ≥  V​(0, 𝐜)​​ and  
​P​(​𝐜̃  ​, ​T ̃ ​)​  ≥  P​(𝐜, T)​​, with one inequality strict.

Toward characterizing efficient allocations, we define the following planning 
problem:

(3)	​ ​P​​ ∗​​(v)​  = ​   sup​ 
c∈C,T≥0

​​P​(c, T  )​​

​subject to 

	​ {​
V​(0, c)​  =  v,

​ 
​
​   

T maximizes (1) at t  =  0.
​ 

​
​​​

We define ​​P​​ ∗​​ on the domain ​v  ∈ ​ [​ V 
¯

 ​, ​V​max​​]​  ≡  V​. It is infeasible to deliver ​v  < ​  V 
¯

 ​​. 
It is also infeasible to deliver higher value than ​​C 

–
 ​/ρ​, and we assume ​​V​max​​  < ​ C 

–
 ​/ρ​.11 

Note that if ​​P​​ ∗​​ is strictly decreasing, it characterizes the Pareto frontier. In what fol-
lows, we assume ​​ C 

¯
 ​​ is sufficiently low to guarantee that ​​P​​ ∗​​ is strictly decreasing.12

The first result states that we can restrict attention to allocations in which default 
occurs only if ​​V​​ D​​(t)​  = ​ V 

–
​​.

LEMMA 1: It is weakly optimal in problem (3) to never default if ​​V​​ D​​(t)​  = ​  V 
¯

 ​​. That 
is, in any efficient allocation, ​T  =  ∞​.

The argument why default never occurs at ​​V​​ D​​(t)​  = ​  V 
¯

 ​​ is as follows. It is always 
feasible to deliver ​​ V 

¯
 ​​ by choosing a constant level of consumption until the first 

arrival of ​​V 
–
​​, at which point the government defaults (a result that follows from 

Assumption 1(iv)). This level of consumption is strictly less than the endow-
ment because of the deadweight costs of default at ​​ V 

¯
 ​​ (from Assumption 1(ii) and  

11 The fact that ​​V​max​​​ is strictly less than ​​C  – ​/ ρ​ ensures that the planner can set ​​v ˙ ​  <  0​ at the upper bound of the 
domain, a controllability requirement used in some of our proofs.

12 The reason why ​​P​​ ∗​​(v)​​ may not be decreasing is that the threat of default is so severe that the planner would 
rather “forgive debt” by raising ​v​ to ​v′  >  v​(0)​​ instantaneously at ​t  =  0​ without compensating lenders. If ​​ C 

¯
 ​​ is 

sufficiently low, forgiveness is dominated by setting ​c  =  ​ C 
¯

 ​​ until ​v​(t)​  =  v′​. As ​​ C 
¯

 ​  →  − ∞​, this approximates a 
lump-sum payment at ​t  =  0​, which allows the planner to move ​v​ arbitrarily fast relative to the first arrival of ​​V 

–
​​. 

Specifically, ​​lim​​ C 
¯

 ​→−∞​​​(​P​​ ∗​​(v)​ − ​P​​ ∗​​(v′)​)​  ≥  v′ − v​. 
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​​ V 
¯

 ​  < ​ V 
–
​​). Hence, this allocation dominates immediate default at ​​ V 

¯
 ​​. This lemma 

allows us to substitute ​T  =  ∞​ in (3).
To solve problem (3), we appeal to standard recursive techniques and study the 

following Hamilton-Jacobi-Bellman (HJB) equation:

(P)	​​ (r + ​1​​[v<​V 
–
​]​​​ λ)​ ​P​​ ∗​​(v)​  = ​   sup​ 

c∈​[​ C 
¯

 ​,​C 
–
 ​]​
​​​{y − c + ​P​​ ∗⁣​′​(v)​​v ˙ ​}​,​

subject to

(4)	​ ​v ˙ ​  =  − c + ρv − ​1​​[v<​V 
–
​]​​​ λ​[​V 

–
​ − v]​​

and the state-space constraint ​v  ∈  V​. Let ​​​​ ∗​​(v)​​ denote an optimal policy associated 
with this recursive formulation. Proposition B.1 in the online Appendix details the 
necessary and sufficient conditions for a candidate value function to be a solution 
to (P).

Problem (P) implies that we can divide the state space into two regions. For  
​v  ∈ ​ [​ V 

¯
 ​, ​V 

–
​)​​, default occurs with probability ​λ​. Following Cole and Kehoe (2000), 

we refer to this subset of the domain as the Crisis Zone. For ​v  ∈ ​ [​V 
–
​, ​V​max​​]​​, default 

does not occur even if the high outside default value is available. We refer to this 
subset as the Safe Zone. The fact that default occurs in the Crisis Zone even in the 
presence of a deadweight loss (that is, ​ρ​V 

–
​  <  y​) reflects market incompleteness. 

Specifically, the planner would like to adjust consumption in response to the realiza-
tion of ​​V 

–
​​, but is prevented from doing so.

To characterize Pareto efficient allocations, we proceed in steps: we conjecture 
a candidate efficient allocation; we solve (P) under this conjecture; and then we 
verify if and when the candidate allocation satisfies the optimality conditions set 
out in Proposition B.1. Our conjectures are guided by the two competing forces 
driving debt dynamics; namely, relative impatience favors debt accumulation, while 
the costs of default favor debt reduction. The next two subsections derive solutions 
assuming that the borrowing and saving forces dominate, respectively. With the 
solutions in hand, we verify under what parameter configurations they solve the 
Pareto problem. We also verify that there are no parameter configurations for which 
neither the borrowing nor the saving allocation is efficient.

A. Efficient Borrowing Allocations

We first conjecture that the borrowing incentive dominates. Given the linearity 
of utility, a reasonable conjecture is that consumption is at the upper bound until ​v​ 
reaches ​​ V 

¯
 ​​. In particular, we define

(5)	​ ​​ B​ ∗ ​​(v)​  ≡ ​ {​
​C 
–
 ​
​ 

for v  ∈ ​ (​ V 
¯

 ​, ​V​max​​]​​    
 ​(ρ + λ)​​ V 

¯
 ​ − λ​V 

–
​
​ 

for v  = ​  V 
¯

 ​.
 ​​ ​

This sets consumption at its maximum possible level, ​​C 
–
 ​​, for the entire state space 

except at the lowest possible value ​​ V 
¯

 ​​. This implies ​​v ˙ ​  <  0​ for ​v  > ​  V 
¯

 ​​. At ​v  = ​  V 
¯

 ​​, 
the value cannot be further reduced given the government’s option to default. Hence, 
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consumption is set to deliver ​​v ˙ ​  =  0​. From equation (4), ​​v ˙ ​  =  0​ at ​​ V 
¯

 ​​ implies that  
​c  = ​ (ρ + λ)​​ V 

¯
 ​ − λ​V 

–
​​.

Let ​​P​ B​ ∗ ​​ denote the value to the lenders under this conjectured consumption pol-
icy function. We solve for ​​P​ B​ ∗ ​​ using (P) together with the value at the boundary,  
​​P​ B​ ∗ ​​(​ V 

¯
 ​)​​ (which is determined by consumption at ​​ V 

¯
 ​​). The online Appendix contains 

closed-form expressions for ​​P​ B​ ∗ ​​ for finite ​​C 
–
 ​​; in the text, we take the limit as ​​C 

–
 ​  →  ∞​ 

to provide intuition. In particular, for any ​v​,

(6)	​ ​ lim​ 
​   C ​→∞

​​​P​ B​ ∗ ​​(v)​  = ​ P​ B​ ∗ ​​(​ V 
¯

 ​)​ − ​(v − ​ V 
¯

 ​)​,​

where ​​P​ B​ ∗ ​​(​ V 
¯

 ​)​  = ​ (y − ​(ρ + λ)​​ V 
¯

 ​ + λ​V 
–
​)​/​(r + λ)​​. Expression (6) states that the pay-

ment to the lenders is the maximal incentive-compatible payment minus a lump sum 
consumed by the government in the initial period.

We now verify if and when ​​P​ B​ ∗ ​​ is a solution to problem (P). Consider an initial 
promised value at the boundary of the Safe Zone, ​v  = ​ V 

–
​​. One feasible allocation is 

to set consumption at ​c  =  ρ​V 
–
​​. This maintains a constant value of ​​V 

–
​​ for the govern-

ment, which guarantees no default. The value to the lender is ​​(y − ρ​V 
–
​)​/r​. A neces-

sary condition for ​​P​ B​ ∗ ​​ to be optimal is that it delivers weakly greater value at ​​V 
–
​​ than 

this alternative. We show that this is also sufficient.

PROPOSITION 1: ​​P​ B​ ∗ ​​ is a solution to the planning problem if and only if

(7)	​ r​P​ B​ ∗ ​​(​V 
–
​)​  ≥  y − ρ​V 

–
​.​

This condition has the following interpretation: it is efficient to borrow into the 
Crisis Zone rather than remain in the Safe Zone indefinitely. The left-hand side 
is the annuitized value of the objective from borrowing into the Crisis Zone. The 
right-hand side is the net payments to the lender from setting ​​v ˙ ​  =  0​ at the boundary 
of the Safe Zone (that is, the payments that guarantee that the government’s value 
does not enter the Crisis Zone). The decision of whether to exit the Safe Zone is the 
crucial question given the inefficiencies associated with default, and the proposition 
states that this is the only restriction on parameter values that needs to be checked to 
verify that the borrowing allocation is efficient.

Again, for intuition, we let ​​C 
–
 ​  →  ∞​, and (7) becomes

(8)	​ r​(ρ − r)​​(​V 
–
​ − ​ V 

¯
 ​)​  ≥  λ​(y − ρ​V 

–
​)​.​

The right-hand side represents the deadweight costs of default times the probabil-
ity of default in the Crisis Zone. The larger this is, the more costly it is to enter 
the Crisis Zone and the more stringent this condition. The left-hand side cap-
tures relative impatience and the value of delivering utility to the government by 
front-loading consumption. The larger the discount rate ​ρ​, the less stringent this 
condition. When ​ρ  =  r​, the condition cannot be satisfied if ​y  >  ρ​V 

–
​​, that is, if there 

is a deadweight cost to default and the government is not impatient. Conversely, 
if ​y  =  ρ​V 

–
​​, this condition will be satisfied as long as ​ρ  >  r​. This logic extends to 

finite ​​C 
–
 ​​.
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Note that if condition (8) is violated (or more generally, condition (7)), then the 
planner would not find it optimal to borrow into the Crisis Zone: it prefers to deliver ​​
V 
–
​​ to the government without inducing a future default. We use this observation to 

construct our second type of efficient allocations, where the planner chooses to exit 
the Crisis Zone when the promised value is close to the boundary of the Safe Zone.

B. Efficient Saving Allocations

An alternative to borrowing into the Crisis Zone is to save into the Safe Zone. 
This allocation favors reducing the probability of default over the relative impa-
tience of the government.

We start then by conjecturing that the Safe Zone is an absorbing state. In particu-
lar, for the Safe Zone, we let consumption be

(9)	​ ​​ S​ ∗​​(v)​  ≡ ​ {​
​C 
–
 ​
​ 

if v  ∈ ​ (​V 
–
​, ​C 

–
 ​/ρ)​​  

ρ​V 
–
​
​ 

if v  = ​ V 
–
​.
 ​​ ​

This implies that in the interior of the Safe Zone, the government receives the maxi-
mal consumption. However, at the boundary, the government receives the consump-
tion that sets ​​v ˙ ​  =  0​, and hence ​v​ never transits from the Safe Zone into the Crisis 
Zone. With this conjecture, we can solve for the implied value function in the Safe 
Zone, which we denote ​​P​ S​ ∗​​ (see the online Appendix for the closed-form expression).

For the Crisis Zone, the planner decides between saving toward the Safe Zone or 
remaining in the Crisis Zone. We denote the former scenario with a “hat.” In par-
ticular, the linearity of the problem leads us to conjecture that if saving is efficient, 
consumption will be at its lower bound. Thus, we define

(10)	​ ​ ˆ ​​(v)​  ≡ ​  C 
¯

 ​  for v  ∈ ​ [​ V 
¯

 ​, ​V 
–
​)​.​

The associated value from this policy is ​​P ˆ ​​, which is obtained by solving (P) using  
​​P​ S​ ∗​​(​V 

–
​)​​ as a boundary condition.

The online Appendix contains the expression for ​​P ˆ ​​ for finite ​​ C 
¯

 ​​; for intuition, we 
take the limit as saving becomes arbitrarily fast:

(11)	​ ​  lim​ 
​ C 
¯

 ​→−∞
​​​P ˆ ​​(v)​  = ​ P​ S​ ∗​​(​V 

–
​)​ + ​V 

–
​ − v.​

That is, the conjectured allocation calls for an initial lump sum payment by the 
government that is sufficient to reach the boundary of the Safe Zone immediately.

The value from saving into the Safe Zone is one building block of the efficient 
saving allocation. However, the planner may find it optimal to abandon the savings 
strategy in the Crisis Zone and instead pursue the borrowing one when the initial 
debt level is sufficiently high (that is, the promised value, ​v​, is low). As a result, our 
conjectured value function in the Crisis Zone is the upper envelope of the savings 
and the borrowing conjectures:13

13 The Cole-Kehoe model also features a savings and a borrowing region within the Crisis Zone (for certain 
parameter values) when the government is impatient. See, for example, Cole and Kehoe (1996), Figure 2.
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(12)	​ ​P​ S​ ∗​​(v)​  ≡  max ⟨​P ˆ ​​(v)​, ​P​ B​ ∗ ​​(v)​⟩    for v  ∈ ​ [​ V 
¯

 ​, ​V 
–
​)​.​

It is possible to show that ​​P ˆ ​​ and ​​P​ B​ ∗ ​​ cross at most once for ​v  ∈ ​ [​ V 
¯

 ​, ​V 
–
​]​​. We denote 

by ​​v​​ I​  ∈ ​ [​ V 
¯

 ​, ​V 
–
​]​​ such a crossing point and set ​​v​​ I​  = ​  V 

¯
 ​​ if they do not cross. The 

point ​​v​​ I​​ has a particular interpretation: the planner is indifferent between saving out 
of the Crisis Zone versus remaining in the Crisis Zone indefinitely at that point. For 
values of ​v​ above ​​v​​ I​​, the planner finds it optimal to save, while for values below ​​v​​ I​​, 
the planner finds it optimal to borrow. With this result in hand, we can complete the 
characterization of the policy function by setting

(13)	​ ​​ S​ ∗​​(v)​  ≡ ​ {​
​ C 
¯

 ​
​ 

if v  ∈ ​ [​v​​ I​, ​V 
–
​)​
​  

​​ B​ ∗ ​​(v)​
​ 

 if v  ∈ ​ [​ V 
¯

 ​, ​v​​ I​)​.
​​​

To verify that ​​P​ S​ ∗​​ is a solution to the planning problem, again consider the point ​​
V 
–
​​ at the boundary of the Safe and Crisis Zones. As with the borrowing allocation, 

the crucial condition is whether at the boundary of the Safe Zone, the objective is 
maximized by staying put versus borrowing to the upper bound.

PROPOSITION 2: ​​P​ S​ ∗​​ is a solution to the planning problem if and only if

(14)	​ r​P​ S​ ∗​​(​V 
–
​)​  =  y − ρ​V 

–
​  ≥  r​P​ B​ ∗ ​​(​V 

–
​)​.​

Note that this condition is the mirror image of Proposition 1, which established the 
efficiency of the borrowing allocation. Together, Proposition 1 and 2 characterize an 
efficient allocation under any parameter configuration consistent with Assumption 
1. In particular, either the borrowing or the saving allocation is efficient.

III.  Competitive Equilibria

We now discuss competitive equilibria, and, as we will see, the efficient alloca-
tions provide a useful benchmark in the characterization.

We consider Markov equilibria. The payoff relevant states are the face value of 
debt ​b​ and default payoff ​​V​​ D​​. Recall that the high default payoff state is only rel-
evant if the government exercises the option to default; otherwise, the low default 
payoff state resumes. Therefore, we subsume the notation for the default payoff 
state ​​V​​ D​  = ​  V 

¯
 ​​ when defining prices and values conditional on repayment.

A. The Government’s Problem

Let ​V​(b)​​ denote the government’s equilibrium value of repayment given the face 
value of debt ​b​. Strategic default implies repayment if ​V​(b)​  ≥ ​ V​​ D​​, and default 
otherwise.

Parallel to the analysis of Section II, it is useful to split the state space into two 
regions. Given an equilibrium value ​V​, we define the following: the Safe Zone is ​b  ∈ ​
[− ​a –​, ​ b ¯ ​]​​ where ​​ b ¯ ​​ satisfies ​V​(​ b ¯ ​)​  = ​ V 

–
​​ and define ​​a –​  ≡ ​ (​C 

–
 ​ − y)​/r​ as the upper bound 

on assets that can be consumed; and the Crisis Zone is ​b  ∈ ​ (​ b ¯ ​, ​b 
–
​]​​, where ​​b 

–
​​ satis-

fies ​V​(​   b ​)​  = ​  V 
¯

 ​​. In each of the equilibria we study, we will establish the existence 
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of these thresholds. As in the preceding analysis, the Safe Zone is the space of debt 
(and assets) such that the government will not default if the high default payoff 
state arrives. However, the government may default at some point in the future. 
The Crisis Zone is the space of debt such that the government will default upon the 
arrival of ​​V​​ D​  = ​ V 

–
​​. For ​b  > ​ b 

–
​​, the debt level is so high that, if the initial state is 

in this region, the government defaults immediately regardless of the payoff state. 
This region is beyond the endogenous borrowing limit and will never be reached 
from below in equilibrium. We denote the relevant debt state space in a competitive 
equilibrium by ​B  ≡ ​ [− ​a –​, ​b 

–
​]​​.

To characterize the government’s problem, assume that the government faces an 
equilibrium price schedule ​q : B  → ​ [​ q 

¯
 ​, 1]​​, where ​​ q 

¯
 ​  >  0​ is defined as

(15)	​ ​ q 
¯

 ​  ≡ ​   r + δ _ 
r + δ + λ ​,​

which is the lowest possible bond price consistent with equilibrium in ​B​ (that is, the 
bond price that obtains when the government always defaults at the first arrival of ​​V 

–
​​).

At each point in time, the government chooses consumption as well as decides 
whether to pay its debt obligations or default after observing the realized ​​V​​ D​​. 
Given consumption ​c​, the government’s debt, conditional on repayment, evolves 
according to

(16)	​ q​(b)​​[​b ˙ ​ + δb]​  =  c + ​(r + δ)​b − y,​

where ​​b ˙ ​​ denotes the derivative of debt with respect to time. The left-hand side rep-
resents revenue from bond auctions, where the term in brackets is the change in the 
face value of debt plus the fraction of debt that matured, which is net new issuances. 
The terms on the right represent consumption plus payments of interest and princi-
pal minus income.

It may be the case that ​q​(b)​​ is discontinuous at some debt level ​​b​0​​​. This occurs, for 
example, when the government is indifferent between borrowing or saving. When 
indifferent, we break the tie by having the government save, which implies that the 
equilibrium price at ​​b​0​​​ is the highest of the prices consistent with the two possible 
strategies.14

We prove in online Appendix Lemma B.2 that the government’s value func-
tion, ​V​, is strictly decreasing and Lipschitz continuous. In addition, it is the unique, 
bounded, continuous solution to the following HJB equation on ​B​, given a price 
schedule ​q​:

(17) ​ ​(ρ + Λ​(b)​)​V​(b)​  = ​  max​ 
c∈​[​ C 

¯
 ​,​C 

–
 ​]​
​​​
⎧
 ⎪ ⎨ 

⎪

 

⎩

c + V′​(b)​ ​​​(​ 
c + ​(r + δ)​b − y

  ____________ 
q​(b)​ ​  − δb)​   



​​  

​b ˙ ​

​ ​  + Λ​(b)​​V 
–
​
⎫

 ⎪ ⎬ 
⎪

 

⎭

​,​

14 For technical reasons, we place one more constraint on debt issuance policies around points of price discon-
tinuity. We impose that for an arbitrarily small neighborhood around ​​b​0​​​, debt buybacks occur at price approaching  
​q​(​b​0​​)​​. The specifics are spelled out in online Appendix Section C.5. Debt buybacks occur when ​​b ˙ ​  <  − δb​, that is, 
when debt decreases faster than existing debt matures. Imposing that buybacks occur at the higher of the two prices 
around the discontinuity allows us to apply recent results in optimal control with discontinuous dynamics. Note 
that this condition is imposed only around points of discontinuity in the price schedule and for an arbitrarily small 
interval around them. We flag when we use this restriction in footnotes 28 and 31. In what follows, we suppress this 
constraint in the notation for the government’s HJB equation. 
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where

(18)	​ Λ​(b)​  ≡  λ​1​​[V​(b)​<​V 
–
​]​​​.​

In the online Appendix, Proposition B.2 provides necessary and sufficient condi-
tions for a solution to (17).

B. The Lenders’ Problem

The equilibrium condition from the lenders’ problem is that lenders must be 
indifferent to purchasing the government’s bonds versus holding risk-free assets that 
return ​R​. We consider ​b  ≤  0​ to represent risk-free assets held abroad that have a 
price of 1. For ​b  >  0​, ​b​ represents the liabilities of the government. To price debt in 
equilibrium, consider starting from a debt level ​b  >  0​, and using the government’s 
policy ​​(b)​​ and the budget constraint (16) to derive the equilibrium path of debt 
going forward, ​b​(t)​​. The present value “break-even” bond pricing equation for the 
lender is15

(19)	​ q​(b)​  = ​ ∫ 
0
​ 
∞

​​​e​​ −​(r+δ)​t−​∫ 
0
​ 
t
​​Λ​(b​(s)​)​ ds​​(r + δ)​ dt.​

The integrand is the coupon payment ​r​ plus principal ​δ​. The discount factor is the 
interest rate ​r​ plus the rate at which bonds mature ​δ​ plus a further discount to reflect 
the default survival probability. Note that given an equilibrium path ​b​(t)​​, ​q​ satisfies 
the following ordinary differntial equation (ODE):

(20)	​ ​(r + δ + Λ​(b​(t)​)​)​q​(b​(t)​)​  = ​ (r + δ)​ + q′​(b​(t)​)​b′​(t)​​

for ​b​(t)​  >  0​.

C. Definition of Equilibrium

We are ready to define an equilibrium.

DEFINITION 2: An equilibrium consists of a compact domain ​𝐁​ and functions of 
debt, ​​{q, V, }​​, such that (i) given the government's consumption policy ​​ and stra-
tegic default, lenders break even in expectation at prices q; (ii) given a price sched-
ule q, the government’s maximal value conditional on repayment is V(b), which is 
achieved by consuming ​​(b)  ∈ ​ ​[​ C _ ​, ​C 

–
 ​]​​; and (iii) for b  ∈  ​𝐁​  = ​ ​[−​a –​, ​b 

–
​]​​, V(b)  ≥ ​ ​ V _ ​​, 

with V(​​b 
–
​​) = ​ ​ V _ ​​.

In the definition of equilibria, we require that ​V​(​b 
–
​)​  = ​  V 

¯
 ​​. That is, ​​b 

–
​​ represents 

the maximal endogenous borrowing limit. We do this to eliminate the possibility of 
generating equilibria that depend on ad hoc borrowing limits.

15 This equation anticipates that the government does not cross ​b  =  0​ more than once in a Markov equilibrium; 
and does not default with assets. 
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Note that ​b​ is the face value of debt, which defines the government’s promised 
payments absent default. The expected present value of payments to lenders in equi-
librium is the market value of debt: ​q​(b)​b​. This distinction is useful to bear in mind 
when comparing competitive equilibria to the Pareto problem studied in Section II.

Mirroring the analysis of efficient allocations, we focus on two types of equilib-
ria. In a borrowing equilibrium, the government borrows up to its borrowing limit ​​
b 
–
​​ regardless of initial conditions. In particular, if the government starts in the Safe 

Zone (or with assets), it borrows into the Crisis Zone and eventually defaults. In a 
saving equilibrium, the Safe Zone is an absorbing region.16

D. The Borrowing Equilibrium

We denote equilibrium objects in the borrowing equilibrium with the sub-
script ​B​; that is, ​​​B​​, ​V​B​​, ​q​B​​​ are the consumption, value, and price functions, respec-
tively. Similarly, let ​​​ b ¯ ​​B​​​ denote the threshold between the Safe and Crisis Zones, 
and ​​​b 

–
​​B​​​ the endogenous upper bound on debt.

In the borrowing equilibrium, we conjecture that the government borrows 
to its endogenous debt limit. Given the linearity of preferences and weak impa-
tience, a reasonable conjecture is that the government consumes at its upper bound 
until ​b  = ​​ b 

–
​​B​​​. At the debt limit, the government pays coupons and rolls over matur-

ing bonds until the first arrival of ​​V 
–
​​, at which point it defaults.

This allocation is the same allocation as in the efficient borrowing allocation, a 
symmetry we use to streamline the derivation. In particular, the conjectured equilib-
rium delivers the same payoffs to lenders and government as in the efficient borrow-
ing allocation. Given a price schedule ​​q​B​​​, the borrowing equilibrium payoffs to the 
lender are ​​q​B​​​(b)​b​ and the payoff to the government is ​​V​B​​​(b)​​. Hence, it is the case that

(21)	​ ​P​ B​ ∗ ​​(​V​B​​​(b)​)​  = ​ q​B​​​(b)​b,​

for any ​b  ≤ ​​ b 
–
​​B​​​.

To solve for ​​​b 
–
​​B​​​, note that in the Crisis Zone, there is a constant hazard ​λ​ of 

default, and thus the price of the bond equals ​​ q 
¯

 ​​ defined in (15). At ​b  = ​​ b 
–
​​B​​​, the 

government is indifferent to default at ​​ V 
¯

 ​​; that is, ​​V​B​​​(​​b 
–
​​B​​)​  = ​  V 

¯
 ​​. From (21), we have  

​​​b 
–
​​B​​  ≡ ​ P​ B​ ∗ ​​(​ V 

¯
 ​)​/​ q 

¯
 ​​. Accordingly, we have ​​​B​​​(b)​  = ​ C 

–
 ​​ for ​b  < ​​ b 

–
​​B​​​, and ​​​B​​​(​​b 

–
​​B​​)​  

= ​ ​ B​ ∗ ​​(​ V 
¯

 ​)​​.
We solve for the boundary of the Safe Zone, ​​​ b ¯ ​​B​​​, in a similar fashion. At the bound-

ary, we have ​​P​ B​ ∗ ​​(​V 
–
​)​  = ​ q​B​​​(​​ b ¯ ​​B​​)​ ​​ b ¯ ​​B​​  = ​  q 

¯
 ​ ​​ b ¯ ​​B​​​, where the last inequality uses the knowl-

edge of the price at the boundary under the conjectured borrowing dynamics.17

Given the price schedule in the Crisis Zone ​​(​​ b ¯ ​​B​​, ​​b 
–
​​B​​]​​, we extend ​​q​B​​​ into the Safe 

Zone by solving the ODE in (20) with boundary condition ​​q​B​​​(​​ b ¯ ​​B​​)​  = ​  q 
¯

 ​​. The solu-
tion can be expressed in closed form (see online Appendix equation (31)). For  

16 In online Appendix Section A, we discuss a third type of Markov equilibrium, which we denote a hybrid 
equilibrium because it combines features of both the saving and borrowing equilibria. Given the multiplicity we 
discuss below, one could also construct sunspot equilibria.

17 Using the formula for ​​P​ B​ ∗ ​​ in the online Appendix, we can show that ​​​ b ¯ ​​B​​  ≥  0​ as ​​P​ B​ ∗ ​​(​V 
–
​)​  ≥  0​.
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​b  ∈ ​ [− ​a –​, 0]​​, the equilibrium price is ​1​ (as the government has assets). Letting  
​​B​B​​  ≡ ​ [− ​a –​, ​​b 

–
​​B​​]​​, this completes our conjecture of the borrowing equilibrium.

Figure 1 depicts the equilibrium objects for a parameterized borrowing equilib-
rium. Panel A depicts the value function. The dotted horizontal lines represent the 
two default values, ​​ V 

¯
 ​​ and ​​V 

–
​​. The Safe Zone is demarcated by the vertical line at ​​​ b ¯ ​​B​​​. 

By definition, ​​V​B​​​(​​ b ¯ ​​B​​)​  = ​ V 
–
​​ at this point. Similarly, the endogenous upper bound of 

debt, ​​​b 
–
​​B​​​, occurs when ​​V​B​​​(b)​​ intersects ​​ V 

¯
 ​​. For reference, the dashed line depicts the 

value of setting ​​b ˙ ​  =  0​, given the equilibrium price schedule and the equilibrium 
default policy. The stationary value has a discontinuity at ​​​ b ¯ ​​B​​​ because defaulting 
when ​​V 

–
​​ arrives is strictly better than the stationary value. The stationary value is 

the same as the equilibrium value at the upper bound ​​​b 
–
​​B​​​. Panel B depicts the price 

schedule. The price is monotonically decreasing in the Safe Zone and then is flat at ​​ q 
¯

 ​​ 
for ​b  ∈ ​ [​​ b ¯ ​​B​​, ​​b 

–
​​B​​]​​. The consumption policy function is depicted in panel C. For refer-

ence, the dashed line depicts the stationary consumption level, given the equilibrium 
price schedule. Consumption is strictly above the dashed benchmark until ​b  = ​​ b 

–
​​B​​​, 

at which point consumption drops to the stationary level.
To verify when the conjectured borrowing equilibrium satisfies the equilibrium 

conditions, we need to check that ​​V​B​​​ is a solution of (17). In this case, the import-
ant condition is that starting from the Safe Zone, the government prefers to borrow 
into the Crisis Zone and eventually default rather than remain in the Safe Zone. 
Formally, we have the following result.

Figure 1. Borrowing Equilibrium

Notes: The figure depicts the value, price, and consumption functions in a borrowing equilibrium, respectively. The 
equilibrium functions are represented by the bold solid blue lines. The horizontal lines in the value function plots 
represent the two default values. The dashed line in the value function plots represents the stationary value function 
at the corresponding equilibrium prices. The dashed line in the consumption plots represents the level of consump-
tion associated with the stationary value. The equilibrium is constructed with parameters ​r  =  1​, ​ρ  =  2​, ​y  =  1​, ​
λ  =  2​, ​δ  =  10​, ​​C 

–
 ​  =  1.2​, ​​ V 

¯
 ​  =  0.8y/ρ​, and ​​V 

–
​  =  0.95y/ρ​.
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PROPOSITION 3: The conjectured borrowing equilibrium ​​{​​B​​, ​V​B​​, ​q​B​​, ​𝐁​B​​}​​ is a com-
petitive equilibrium if and only if

(22)	​ ​V​B​​​(b)​  ≥ ​ 
y − ​[r + δ​(1 − ​q​B​​​(b)​)​]​b

  _________________  ρ  ​,    for all b  ∈ ​ [0, ​​ b ¯ ​​B​​]​.​

The right-hand side of (22) is the value of indefinitely consuming the stationary 
level of consumption at equilibrium prices in the Safe Zone. Thus, borrowing into 
the Crisis Zone is an equilibrium outcome if doing so dominates remaining in the 
Safe Zone.

Crucially, condition (22) is a weaker condition than for borrowing to be efficient, 
condition (7). Efficiency requires ​​P​ B​ ∗ ​​(v)​  ≥ ​ (y − ρv)​/r​ in the Safe Zone. Using that 
the equilibrium payoff to lenders is ​​q​B​​​(b)​b​ and the government’s value is ​​V​B​​​(b)​​, the 
efficiency condition (7) can be rewritten as

(23)	​ ​V​B​​​(b)​  ≥ ​ 
y − r​q​B​​​(b)​b

 _ ρ  ​,​

for all ​b  ∈ ​ [0, ​​ b ¯ ​​B​​]​​. As ​​q​B​​​(b)​  <  1​ on this domain, condition (22) is strictly weaker 
than (23).

Both inequalities (22) and (23) compare the value function to the value that would 
be generated by keeping the level of debt constant. The difference between the two 
inequalities is the price used to compute this stationary value. In inequality (22), 
the comparison uses the equilibrium prices. In equation (23), the comparison uses 
the planner’s cost of rolling over the lender’s value, ​​q​B​​​(b)​b​, at the risk-free interest 
rate ​r​. This difference stems from a time consistency problem. The planner can 
commit to remaining in the Safe Zone, and in that case, discounts payments at the 
risk-free rate ​r​. In a borrowing equilibrium, the cost of keeping debt constant in the 
safe zone is strictly greater than ​r​. In this equilibrium, lenders expect that the gov-
ernment in the future will borrow into the Crisis Zone and eventually default. If the 
government were to remain in the Safe Zone today, because of these expectations 
with regard to its future behavior, the price of the bonds would remain lower than 
one. Hence, it would nevertheless pay a default premium, rolling debt over at a yield 
greater than ​r​. Thus, the crucial time consistency problem in the borrowing equilib-
rium is the inability to credibly commit not to exit the Safe Zone at some point in 
the future. The link between creditor beliefs about future fiscal policy and the gov-
ernment’s best response to the resulting equilibrium price schedule will provide the 
source of multiplicity discussed in the next section.

Maturity is at the heart of this time consistency problem. To see this, let us con-
sider what happens when ​δ  →  ∞​, that is, as the bonds mature instantaneously 
(the appropriate continuous time analog of one-period debt). In the proof of the 
next proposition, we show that ​​q​B​​​(b)​  →  1​ and ​δ​(1 − ​q​B​​​(b)​)​  →  0​ for ​b  ∈ ​
[0, ​​ b ¯ ​​B​​)​​, as ​δ  →  ∞​. Hence, the equilibrium condition (22) and the efficiency condi-
tion (23) become identical.18 More generally, the proof of the following proposition 
establishes that condition (22) becomes stronger as ​δ​ increases. Summarizing the 
above, we have the following result.

18 Note that ​δ​ has no effect on ​​P​ B​ ∗ ​​ because the planning problem is independent of maturity. Even though ​​​ b ¯ ​​B​​​ is 
affected by changes in ​δ​, ​​q​B​​​(​​ b ¯ ​​B​​)​ ​​ b ¯ ​​B​​​ remains constant.
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PROPOSITION 4: The following holds:

	 (i)	 If the borrowing allocation is efficient, then the conjectured borrowing equi-
librium is a competitive equilibrium for any ​δ​;

	 (ii)	 If the borrowing equilibrium exists for ​​δ​0​​​, then it exists for any ​δ  ∈ ​ [0, ​δ​0​​]​​; 
and

	 (iii)	 If the borrowing allocation is not efficient, then there exists a ​​δ​1​​  <  ∞​ such 
that the conjectured borrowing equilibrium is not a competitive equilibrium 
for ​δ  > ​ δ​1​​​.

In Figure 2, we plot the market value of debt, ​​q​B​​​(b)​b​, against the correspond-
ing value for the government, ​​V​B​​​(b)​​, using the same parameters as in Figure  1. 
Specifically, the solid line in the figure depicts the joint surplus between the lenders 
and the government in a competitive equilibrium. The dashed line is the efficient 
frontier, which in this parameterization is the efficient saving value, ​​P​ S​ ∗​​(v)​​. The effi-
cient borrowing value, ​​P​ B​ ∗ ​​, is identical to the equilibrium frontier. The inefficiency of 
the borrowing equilibrium reflects that the government borrows in the competitive 
equilibrium, while the planner would like to implement the saving allocation.

E. The Saving Equilibrium

We now consider an alternative equilibrium that features saving out of the Crisis 
Zone. The approach closely parallels that of the efficient saving allocation. As in the 

Figure 2. Joint Surplus: Borrowing Equilibrium

Notes: The figure depicts the joint surplus in the borrowing equilibrium. The solid line is a parametric plot of  
​​(​V​B​​​(b)​, ​q​B​​​(b)​b)​​ for ​b  ∈ ​ [0, ​​b 

–
​​B​​]​​. The dashed reference line is ​​P​​ ∗​​(v)​​ for ​v  ∈ ​ [​ V 

¯
 ​, ​V​B​​​(0)​]​​. The parameters are the same 

as in Figure 1.
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efficient saving allocation, we conjecture that the Safe Zone is an absorbing state 
and the Crisis Zone can potentially be divided into a saving region and a borrowing 
region. Let ​​[− ​a –​, ​​ b ¯ ​​S​​]​​ denote the Safe Zone, ​​(​​ b ¯ ​​S​​, ​b​​ I​]​​ the saving region in the Crisis 
Zone, and ​​(​b​​ I​, ​​b 

–
​​S​​]​​ the borrowing region in the Crisis Zone.

As the Safe Zone is absorbing, prices are one for ​b  ≤ ​​  b ¯ ​​S​​​. The government’s 
value at the boundary is ​​V 

–
​​ by definition, which is obtained by consuming ​y − r​​ b ¯ ​​S​​​ 

forever. Thus, ​​​ b ¯ ​​S​​  = ​ (y − ρ​V 
–
​)​/r​.

For ​b  ∈ ​ (​​ b ¯ ​​S​​, ​b​​ I​]​​, the government is actively saving toward the Safe Zone. The 
value and associated prices solve the two ODE’s characterizing the government’s 
and lenders’ problems using the Safe Zone value and price as boundary conditions. 
We present the details and solutions in the online Appendix.

The debt level ​​b​​ I​​, if it exists, is determined as in the efficient analysis; specif-
ically, it is the unique point of indifference between saving and borrowing in the 
Crisis Zone. For ​b  ∈ ​ (​b​​ I​, ​​b 

–
​​B​​]​​, the value and prices are the same as in the borrowing 

equilibrium. If ​​b​​ I​​ does not exist, ​​​b 
–
​​S​​​ is pinned down by the point the value of saving 

reaches ​​ V 
¯

 ​​.
The equilibrium objects ​​{​​S​​, ​V​S​​, ​q​S​​, ​B​S​​}​​ are detailed in the online Appendix and 

depicted in Figure 3, which follows the layout of Figure 1.
As in our discussion of efficient allocations, the key question is whether it is 

optimal to remain in the Safe Zone or borrow to the upper bound. Crucially, for the 
equilibrium, the question is now whether the government finds it privately optimal. 

Figure 3. Saving Equilibrium

Notes: The figure depicts the value, price, and consumption functions in a saving equilibrium, respectively. The 
equilibrium functions are represented by the bold solid blue lines. The horizontal lines in panel A represent the two 
default values. The dashed line in panel A represents the stationary value function at the corresponding equilib-
rium prices. The dashed line in panel B represents the level of consumption associated with the stationary value. 
The equilibrium is constructed with the same parameters as Figure 1: ​r  =  1​, ​ρ  =  2​, ​y  =  1​, ​λ  =  2​, ​δ  =  10​, ​​
C 
–
 ​  =  1.2​, ​​ V 

¯
 ​  =  0.8y/ρ​, and ​​V 

–
​  =  0.95y/ρ​. The value of ​​ C 

¯
 ​​ is set low enough so that it never binds in equilibrium.
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The condition for saving to be a valid equilibrium outcome is stated in the following 
proposition.

PROPOSITION 5: The conjectured saving equilibrium ​​{​​S​​, ​V​S​​, ​q​S​​, ​𝐁​S​​}​​ is a competi-
tive equilibrium if and only if

(24)	​ ​​ b ¯ ​​S​​  ≡ ​  y − ρ​V 
–
​
 _____ r ​   ≥ ​​  b ¯ ​​B​​.​

To see why saving can be an equilibrium outcome, first note that the government 
always has the option to remain in the Crisis Zone and wait for the high default 
option. As ​​V 

–
​  > ​ V​S​​​(b)​​ in the Crisis Zone, this is a plausible alternative. The cost of 

this strategy is that the government must roll over its debt at a discounted price while 
waiting for ​​V 

–
​​. If instead the government saves to the Safe Zone, it can roll over its 

debt at the risk-free price. This increase in price ensures that the government at least 
partially internalizes the gain from reducing the probability of default and provides 
the government with the incentive to save.

However, the government’s private incentive to save in equilibrium is weaker 
than that of the planner. Recall from Proposition 2 that saving is efficient if  
​​(y − ρ​V 

–
​)​/r  ≥ ​ P​ B​ ∗ ​​(​V 

–
​)​  = ​  q 

¯
 ​ ​​ b ¯ ​​B​​​. As ​​ q 

¯
 ​  <  1​, condition (24) is stronger than the effi-

ciency condition. Thus, efficiency of saving does not imply that it can be sustained in 
equilibrium. That is, a necessary but not sufficient condition for a saving equilibrium 
to exist is that the saving allocation is efficient.

To gain more intuition, we let ​​C 
–
 ​  →  ∞​ and condition (24) becomes

	​ r​(ρ − r)​​(​V 
–
​ − ​ V 

¯
 ​)​  ≤ ​ [​ 

δ _ 
r + δ + λ ​]​λ​(y − ρ​V 

–
​)​.​

The term in square brackets is strictly less than one. Comparing to condition (8), 
we see that the condition for saving in equilibrium is strictly tighter. We can also 
infer the role of maturity, ​δ​. The gap between the two conditions is decreasing in ​δ​. 
As ​δ  →  ∞​, that is when bonds have arbitrarily short maturity, then savings is an 
equilibrium if and only if it is efficient. As maturity lengthens, saving is harder to 
sustain in equilibrium even when efficient. In particular, the greater the fraction of 
debt rolled over each period, the stronger the government’s private incentive to save, 
while maturity is irrelevant for the efficient allocation. At one extreme, if ​δ  =  0​ and 
bonds are perpetuities, the government never saves in equilibrium regardless of effi-
ciency; at the other extreme, as ​δ  →  ∞​, the conditions for saving to be efficient and 
to be an equilibrium outcome converge. Collecting results, we have the following.

PROPOSITION 6: A necessary condition for ​​{​​S​​, ​V​S​​, ​q​S​​, ​𝐁​S​​}​​ to be a competi-
tive equilibrium is that saving is efficient. If saving is strictly efficient, that is,  
​​P​ S​ ∗​​(​V 

–
​)​  > ​ P​ B​ ∗ ​​(​V 

–
​)​​, there exists a ​​δ​S​​  ∈ ​ [0, ∞)​​, defined by

(25)	​ ​δ​S​​  ≡ ​ 
λ​P​ B​ ∗ ​​(​V 

–
​)​
 ___________  

​P​ S​ ∗​​(​V 
–
​)​ − ​P​ B​ ∗ ​​(​V 

–
​)​ ​ − r,​

such that ​​{​​S​​, ​V​S​​, ​q​S​​, ​𝐁​S​​}​​ is a competitive equilibrium if ​δ  ≥ ​ δ​S​​​, and is not an equi-
librium otherwise. If ​ρ  >  r​, then ​​δ​S​​  >  0​.
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Even when the government saves in equilibrium, it exits the Crisis Zone at a slower 
pace than the planner. In the planning problem, consumption is at its lower bound  
​​ C 
¯

 ​​  in the saving region. In the online Appendix, we solve for equilibrium consump-
tion and show that it is interior in the saving region. In particular, equilibrium debt 
dynamics are such that ​​b ˙ ​  ≥  − δb​. That is, while saving, the government never 
repurchases nonmatured bonds; it deleverages by letting bonds mature and not fully 
replacing them with new bonds. This reflects the inefficiency of long-term debt dis-
cussed by Aguiar et al. (2018). The government does not capture the full return to 
eliminating the probability of default and thus does not have an incentive to save 
as quickly as possible. This leads to a divergence between the saving equilibrium 
allocation and the efficient saving allocation.

The solid line in Figure 4 plots the market value of debt, ​​q​S​​​(b)​b​, against the 
government’s value, ​​V​S​​​(b)​​. The upper and lower dashed lines are the efficient 
frontier for the saving and borrowing allocation, respectively. The saving allocation 
dominates the borrowing allocation and hence represents the Pareto frontier. For  
​v  ∈ ​ [​ V 

¯
 ​, ​V​S​​​(​b​​ I​)​]​​, that is, for ​b  ∈ ​ (​b​​ I​, ​​b 

–
​​B​​]​​, the government borrows when it is effi-

cient to save. For ​v  ∈ ​ [​V​S​​​(​b​​ I​)​, ​V 
–
​]​​, or ​b  ∈ ​ [​​ b ¯ ​​S​​, ​b​​ I​]​​, the government saves, but at a 

rate that is inefficiently slow. Hence, the equilibrium surplus remains within the 
Pareto frontier. Note that the discontinuity in the equilibrium price schedule at  
​​b​​ I​​ is reflected in the sharp change in the lender’s value around this threshold. For  
​v  ≥ ​ V 

–
​​, or ​b  ≤ ​​  b ¯ ​​S​​​, the government is in the Safe Zone, and the efficient and equi-

librium allocations coincide.
The fact that maturity drives a wedge between efficiency and equilibria antic-

ipates the next section. Even when saving is efficient and can be supported as an 

Figure 4. Joint Surplus: Saving Equilibrium

Notes: The figure depicts the joint surplus in the saving equilibrium. The solid line is a parametric plot of  
​​(​V​S​​​(b)​, ​q​S​​​(b)​b)​​ for ​b  ∈ ​ [0, ​​b 

–
​​B​​]​​. The upper and lower dashed reference lines are ​​P​ S​ ∗​​(v)​​ and ​​P​ B​ ∗ ​​(v)​​, respectively, for ​

v  ∈ ​ [​ V 
¯

 ​, ​V​B​​​(0)​]​​. The parameters are the same as in Figure 1.
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equilibrium, it is still possible that the borrowing allocation remains a valid com-
petitive equilibrium. In the next section, we discuss the role of maturity in this 
multiplicity.

IV.  Maturity and Multiplicity

The preceding section provided necessary and sufficient conditions for both the 
borrowing and saving equilibria. This allows us to explore under what parameter-
izations the model has multiplicity as well as the economics behind the multiplicity.

The key condition to sustain either equilibrium is whether the government prefers 
to remain in the Safe Zone or borrow into the Crisis Zone. Importantly, the govern-
ment makes this decision taking the equilibrium price schedule as given. This is the 
crucial distinction between the equilibrium problem and the planning problem and 
is at the heart of the potential multiplicity.

First, consider the borrowing equilibrium depicted in Figure 1. While in the Safe 
Zone (​b  < ​​  b ¯ ​​B​​​), there is no threat of immediate default as ​​V​B​​​(b)​  ≥ ​ V 

–
​​. Nevertheless, 

the bond price lies strictly below 1. The creditors require a default premium because 
they anticipate that the government will borrow into the Crisis Zone (​b  > ​​  b ¯ ​​B​​​), and 
then potentially default, before the debt matures. Hence, the government does not 
have the option to remain in the Safe Zone at risk-free prices. Rather, the question 
is whether to maintain its debt position in the Safe Zone at a price below 1, or bor-
row into the Crisis Zone. As can be seen, the stationary value in the Safe Zone lies 
strictly below the equilibrium value function. Given that the price schedule offers 
no reward for remaining in the Safe Zone, the creditors’ pessimistic expectations 
become self-fulfilling.

Now consider the saving equilibrium depicted in Figure 3, constructed with the 
same parameter values. Note that the equilibrium price is 1 throughout the Safe 
Zone and then declines in the Crisis Zone. This nonlinearity in the price schedule is 
reflected in the government’s value function. The payoff to saving out of the Crisis 
Zone is the high price at the boundary of the Safe Zone.19

Interestingly, across the two equilibria, the government borrows when prices are 
low (spreads are high), while it saves when prices are high (spreads are low). The 
important element of the price schedule is not the level, but the incentives or dis-
incentives to borrow. In the saving equilibrium, the price schedule declines steeply 
once the government enters the Crisis Zone. In the borrowing equilibrium, the price 
schedule is flat at the boundary of the Safe Zone. In this way, the self-fulfilling 
dynamics we uncover in this paper provide an alternative view of the “gambling 
for redemption” hypothesis that explains the debt accumulation of debt-distressed 
European countries during the debt crises (see Conesa and Kehoe 2017). In our 
model, low debt prices and debt accumulation both arise endogenously.

Note that the multiplicity in the model is dynamic in that it depends on expec-
tations of future equilibrium behavior. In particular, the equilibria are supported 
by different expectations about whether the government will borrow or save, and 
whether bond prices will be the risk-free price or something lower. The underlying 

19 Note that because ​​q​S​​​(b)​  ≥  ​q​B​​​(b)​​ for all ​b  ∈  ​B​S​​ ∩ ​B​B​​​, and ​​B​B​​  ⊆  ​B​S​​​, the government always prefers to face 
the saving equilibrium price schedule.
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tension is between the incentive to dilute long-term bondholders versus the incentive 
to economize on rollover costs. Which effect dominates in equilibrium depends on 
beliefs in a nontrivial part of the parameter space. Moreover, these competing forces 
highlight why maturity plays a central role in the existence of multiple equilibria.

For the limiting case of arbitrarily large ​​C 
–
 ​​, we can state a simple condition that 

determines when it is possible for both equilibria to be supported.

PROPOSITION 7: If the parameters satisfy the following condition:

(26)	​ 1 + ρ​(​ ​V 
–
​ − ​ V 

¯
 ​ _____ 

y − ρ​V 
–
​
 ​)​  > ​   λ _ ρ − r ​  >  r​(​ ​V 

–
​ − ​ V 

¯
 ​ _____ 

y − ρ​V 
–
​
 ​)​,​

there exists an ​M​ and a nonempty interval ​Δ  ⊂ ​ [0, ∞)​​, such that for all ​​C 
–
 ​  >  M​ 

and all ​δ  ∈  Δ​, both the borrowing and saving equilibria exist.

The second inequality in (26) guarantees that the saving allocation is efficient for 
arbitrarily large ​​C 

–
 ​​. We know from Proposition 6 that this is a necessary condition 

and sufficient for high enough ​δ​ for the saving equilibrium to exist.
The first inequality in (26) guarantees the existence of the borrowing equilibrium, 

for any finite ​δ​, when ​​C 
–
 ​​ becomes arbitrarily large. When ​​C 

–
 ​​ becomes arbitrarily large, 

the price of the bond converges to ​​ q 
¯

 ​​ throughout the Safe Zone, as the rate at which 
the government exits the Safe Zone becomes arbitrarily fast. The first inequality ver-
ifies that the government prefers to borrow into the Crisis Zone when facing a price 
close to ​​ q 

¯
 ​​ for all debt levels in the Safe Zone.

This proposition shows that multiplicity is an endemic feature of this model when 
the government is impatient and there are deadweight losses from default.20 

COROLLARY 1: If ​ρ  >  r​ and ​y  >  ρ​V 
–
​​, there always exists a triplet ​​{δ, λ, ​C 

–
 ​}​​ such 

that both savings and borrowing equilibria exist.

V.  Third-Party Policies

The existence of multiple equilibria raises the question of whether a deep-pocketed 
third party, such as the IMF or ECB, could induce market participants to play the 
preferred equilibrium. In the rollover crisis model of Cole and Kehoe (2000), a 
price floor would eliminate the crisis equilibrium. Similarly, in a Calvo-style crisis, 
a price floor (or a cap on spreads) would also eliminate the bad equilibrium. More 
importantly, such a policy would require no resources along the equilibrium path, as 
long as they were credible off equilibrium.

A natural policy question in our framework is how to prevent coordination on the 
borrowing equilibrium when saving is efficient. Debt forgiveness does not select a 
particular equilibrium because both equilibria coexist at low debt levels. Hence, in 
the borrowing equilibrium, debt forgiveness provides only a temporary reduction in 

20 In a discrete time version of the environment, we computed the model by backward induction assuming a 
finite horizon, ​T​, and then letting ​T​ become very large. Holding constant the underlying parameters, such a proce-
dure can converge to either a saving or borrowing equilibrium, depending on the maturity chosen. Hence, taking the 
limit of a finite horizon economy cannot be used to consistently select a particular type of equilibria. 
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debt levels, as in the debt-overhang model of Aguiar and Amador (2011). Similarly, 
a price floor does not eliminate the inefficient equilibrium. In particular, with a lower 
bound on prices greater than ​​ q 

¯
 ​​, the borrowing equilibrium remains an equilibrium 

and the government would borrow up to its borrowing limit at the better price. The 
policy not only would fail, but also would cost resources along the equilibrium path.

More formally, consider a parameterization such that both saving and borrow-
ing equilibria exist, with subscripts ​B​ and ​S​ denoting the respective equilibrium 
objects, as before. This parameterization is the natural launching point for policy 
intervention.

The intervention we study involves a third party that is willing to purchase gov-
ernment bonds at a price ​​q​​ ∗​​ as long as ​b  ≤ ​ b​​ ∗​​. This combines a price floor with 
a quantity restriction. To highlight the role of the price floor versus the quantity 
restriction, we consider two polar cases. In our first scenario, let ​​b​​ ∗​  = ​​ b 

–
​​B​​​. That is, 

the quantity restriction is not tighter than the endogenous borrowing limit in the 
borrowing equilibrium. The second scenario sets ​​b​​ ∗​  = ​​  b ¯ ​​S​​​. This is a tight quantity 
restriction, designed such that interventions potentially involve only risk-free debt.

Let the superscript ​P​ indicate equilibrium objects in the presence of the third-party 
policy. The break-even condition for foreigners is

(27) ​ ​q​​ P​​(b)​  = ​ sup​ 
T≥0

​ ​​{​∫ 
0
​ 
T
​​​e​​ −​(r+δ)​t−​∫ 

0
​ 
t
​​​Λ​​ P​​(​b​​ P​​(s)​)​ ds​​(r + δ)​ dt + ​e​​ −​(r+δ)​T​ ​1​​[​b​​ P​​(T)​≤​b​​ ∗​]​​​ ​q​​ ∗​}​,​

where ​​b​​ P​​(s)​​ denotes the equilibrium evolution of bonds, starting from ​b​, under the 
third-party policy. The equation captures that an investor considers the best among 
all possible hold-and-sell strategies: after purchasing the bonds, the investor can 
hold them up to any time ​T​, at which point, if the total debt remains below ​​b​​ ∗​​, the 
investor has the option to sell them to the third party for a price of ​​q​​ ∗​​. Note that the 
assumption that all the investors are identical means we do not need to consider the 
strategies where one investor sells to another.

Given the price schedule, the problem of the government continues to be charac-
terized by the HJB (17). As a result, in any equilibrium, there will be a Safe Zone 
and a Crisis Zone, demarcated by ​​{​​ b ¯ ​​​ P​, ​​b 

–
​​​ P​}​​, with ​​V​​ P​​(​​ b ¯ ​​​ P​)​  = ​ V 

–
​​ and ​​V​​ P​​(​​b 

–
​​​ P​)​  = ​  V 

¯
 ​​.

As in the analysis without the third party, we will consider two equilibrium con-
jectures: a borrowing one and a saving one. Similarly to our benchmark analysis, 
in a conjectured borrowing equilibrium, starting from a debt level in the Safe Zone, 
the debt eventually reaches the Crisis Zone. In a conjectured saving equilibrium, the 
Safe Zone is an absorbing state.

Consider first the case where ​​b​​ ∗​  = ​​    b ​​B​​​. In this case, the policy does not elimi-
nate the borrowing equilibrium. But if it is generous enough (that is, if ​​q​​ ∗​​ is high 
enough), then it eliminates the saving equilibrium.

PROPOSITION 8 (Loose Quantity Restriction): Assume the inequalities in 
Proposition 7 are satisfied and ​​​b 

–
​​B​​  > ​​  b ¯ ​​S​​​. Suppose ​​q​​ ∗​  ∈ ​ (​ q 

¯
 ​, 1]​​ and ​​b​​ ∗​  = ​​ b 

–
​​B​​​, and 

let ​​C 
–
 ​​ be sufficiently large. Then,

	 (i)	 There always exists a borrowing equilibrium. That is, there is an equilibrium 
where ​​C​​ P​​(b)​  = ​ C 

–
 ​​ for all ​b  < ​ b​​ ∗​​. In this equilibrium, the third party incurs 

losses.
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	 (ii)	 There is a ​​q ̃ ​  <  1​ such that for all ​​q​​ ∗​  > ​ q ̃ ​​, the saving equilibrium does not 
exist.

A better policy is to impose a tighter quantity restriction, that is, ​​b​​ ∗​  = ​​  b ¯ ​​S​​​. In this 
case, the policy selects the saving equilibrium for high enough ​​q​​ ∗​​.

PROPOSITION 9 (Tight Quantity Restriction): Assume the inequalities in 
Proposition 7 are satisfied. Suppose ​​q​​ ∗​  ∈ ​ [​ q 

¯
 ​, 1]​​ and ​​b​​ ∗​  = ​​  b ¯ ​​S​​​. Then,

	 (i)	 The saving equilibrium is always an equilibrium. The third party incurs zero 
losses.

	 (ii)	 There is a ​​q ˆ ​  <  1​ such that for all ​​q​​ ∗​  > ​ q ˆ ​​, the borrowing equilibrium does 
not exist.

The propositions above show that a price floor policy has very different impli-
cations, depending on the quantity restriction that accompanies it. If the quantity 
restriction is loose, a generous price floor ends up incentivizing borrowing and gen-
erates losses for the third party. However, if the quantity restriction is tight enough, 
a generous price floor eliminates the suboptimal borrowing equilibria, and no 
resources are lost by the third party on equilibrium. In fact, in the latter case, the 
third party never needs to purchase debt in equilibrium.

Recall that the multiplicity reflects the trade-off between saving for a better 
price versus the desire to borrow due to impatience. With a price floor absent a 
tight quantity restriction, the third party reduces the incentive to save. The saving 
equilibrium is supported by the gap between prices in the Safe Zone and prices 
in the Crisis Zone as well as the need to roll over bonds. A generous price floor 
in the Crisis Zone eliminates the price differential that incentivizes saving in  
equilibrium.

Rewarding the government for saving, or punishing them for borrowing, is a pol-
icy that can induce the saving equilibrium. A borrowing limit at the boundary of the 
Safe Zone, which is tighter than the endogenous limit, would be effective. However, 
such a policy raises the question of how to enforce the limit if the initial debt is 
beyond it. Third-party purchases conditional on fiscal austerity are reminiscent of 
policies pursued in the European debt crisis as well as many IMF programs. However, 
the events in Europe and elsewhere reflect the difficulties of enforcing explicit debt 
limits. Unfortunately, in the Eaton-Gersovitz framework studied in this paper, there 
is no effective policy that does not involve a similar type of off-equilibrium commit-
ment to punish overborrowing.

Finally, note that a tight quantity restriction policy may not be effective if 
delayed too long. In particular, once ​b  > ​ b​​ I​​, the saving equilibrium is no longer 
distinguishable from the borrowing equilibrium, and thus policy interventions will 
fail to be effective once debt has reached sufficiently high levels. This highlights 
that interventions during debt crises may need to be quick to be successful, and 
policies that “kick the can down the road” may eventually fail. This same point 
about delay, although in a different environment, was emphasized by Lorenzoni 
and Werning (2013).



2808 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2020

VI.  Multiplicity in a Quantitative Model

Our previous analysis emphasized transparency in order to identify and ana-
lyze the economic forces that generate inefficiencies and lead to multiplicity. Of 
course, this required several simplifying assumptions. In this section, we relax these 
assumptions and show that the insights of the theory extend to richer environments, 
such as those used in quantitative analyses.21

Toward this end, we use the state-of-the-art sovereign debt model of Chatterjee 
and Eyigungor (2012)—henceforth, CE12—which features discrete time, concave 
utility for the government, endowment risk, nonlinear default punishment, as well 
as the possibility of reaccessing financial markets after default. In this section, we 
demonstrate that such an environment is prone to the multiplicity identified by our 
analytical framework.

Because we hew very closely to the benchmark CE12 specification, we rele-
gate most details of the set up and its computation to Appendix Section A. We flag 
here the one change we make to the environment. CE12 calibrate their model to 
Argentina. They estimate an AR(1) endowment process and approximate this using 
a discrete Markov chain. We augment the endowment process by including a “rare 
disaster” state. This proves useful in computing the two equilibria. It also has empir-
ical validity given the work of Barro and Ursúa (2008), Barro and Jin (2011), and 
has recently been introduced in the sovereign debt context by Ayres et al. (2015); 
Rebelo, Wang, and Yang (2019); and Paluszynski (2019).

Specifically, the endowment ​​y​t​​​ follows a discretized AR(1) process during “nor-
mal” times, but with constant probability ​​π​dis​​​ switches to a disaster state ​​y​dis​​​. Once 
in the disaster state, it recovers with probability ​​π​rec​​​, at which point it resumes fol-
lowing the normal AR(1) process. Following Barro and Ursúa (2008), we set ​​π​dis​​​ 
to be ​0.97 percent​, and ​​y​dis​​​ to be ​0.20​ log points below the mean of the normal 
AR(1) process. Barro and Ursúa (2008) estimates the average length of a disaster 
to be ​3.5​ years, and hence we set ​​π​rec​​  =  7.14%​ in our quarterly model. We adjust 
the autocorrelation parameter and innovation variance underlying the normal AR(1) 
process to match the autocorrelation and volatility of GDP targeted by CE12.

The addition of the disaster state also involves choosing the fraction of endow-
ment lost due to default in that state. We assume that ​4.5 percent​ of the disaster 
endowment state is lost while in default status. We shall discuss that choice in detail 
below. For the remainder of the endowment process, we use the default cost speci-
fied in CE12.

Other than the enriched endowment state vector and the associated additional 
default cost, the remaining details and parameter values are identical to CE12. In 
particular, we set the benchmark expected maturity to 20 quarters. The quarterly 
risk-free interest is ​1 percent​ and the government’s quarterly discount factor is ​0.954​. 
The remainder of the parameters are reported in the Appendix.

The model features (at least) two equilibria at CE12’s calibrated expected matu-
rity of 20 quarters. Mirroring our analytical model, one equilibrium is a “saving” 
equilibrium, in which an indebted government saves in order to attain a risk-free 

21 Stangebye (2018) discusses the role of concavity of utility and reentry dynamics in generating multiplicity 
in a similar environment. 
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price. For the same parameterization, we compute a “borrowing” equilibrium, in 
which the ergodic distribution features high debt and recurrent default. The policy 
functions and associated price schedules are depicted in Appendix Figures A.1 and 
A.2. The Appendix also contains business cycle moments for both equilibria.

As in the analytical model, the quantitative saving equilibrium features an absorb-
ing “Safe Zone.” That is, there exists a threshold ​​​ b ¯ ​​S​​​ such that if ​b  ≤ ​​  b ¯ ​​S​​​, the govern-
ment never defaults and faces risk-free prices. As is standard in quantitative default 
models with noncontingent bonds, the government’s incentive to default is greatest 
when the endowment is lowest. Thus, ​​​ b ¯ ​​S​​​ is defined by the debt level at which the 
government is indifferent between default and repayment when the endowment is in 
the disaster state. In our benchmark calibration, the market value of ​​​ b ¯ ​​S​​​ is ​1.16​, rela-
tive to an average (quarterly) endowment of ​1.01​ and a disaster endowment of ​0.84​. 
As in the analytical model, there is a region of debt levels above this threshold in 
which the government saves (conditional on positive endowment realizations and no 
default) in order to exit the Crisis Zone.

In the borrowing equilibrium, the government borrows into the Crisis Zone and 
eventually defaults. This equilibrium displays the familiar pattern from the quan-
titative literature in that starting from zero debt, the government leverages up and 
then eventually defaults with probability 1. The ergodic mean of the face value of 
debt-to-GDP ratio is ​0.96​. For reference, CE12 achieve an average ratio of ​0.70​ in 
their benchmark simulation. The remaining ergodic moments of the borrowing equi-
librium are also mostly in line with those of CE12.

Proposition 7 established that there is a nontrivial interval of maturity for which 
multiple equilibria can be supported. In the quantitative version, we successfully 
computed a saving equilibrium for maturities ranging from 1 to 33 quarters. The 
borrowing equilibrium can be computed for maturities as short as 9 quarters. Thus, 
Proposition 7 has quantitative bite: there is a quantitatively significant range of 
maturities for which multiple equilibria exist.

Proposition 7 also emphasized the role of the deadweight costs of default in gen-
erating a saving equilibrium. To map our default cost choice into a deadweight cost, 
recall that the market value of debt at ​​​ b ¯ ​​S​​​ is ​1.16​. At this debt level and in the disaster 
state, the government is indifferent between repayment and default, while the lend-
ers lose ​1.16​ in expected present value. Hence, the market value of the threshold 
represents the surplus lost by default at ​​​ b ¯ ​​S​​​ in state ​​y​dis​​​. This is equivalent to a loss 
of ​1.17 percent​ of the expected present value of the government’s endowment start-
ing from the disaster state (which is ​99.34​).

Whether this is empirically reasonable is difficult to determine, as we need to 
compare the post-default endowment process to the counterfactual process if the 
government had not defaulted. One recent attempt to measure this is Hébert and 
Schreger (2017), which uses the behavior of Argentine equities on US exchanges 
around news events relating to litigation involving hold-out creditors. Their esti-
mates suggest that an unanticipated default generates a decline in market value of 
equity of 45 percent. Thus, the one percent of the expected present value of GDP is 
not unreasonably large.

The standard approach in the quantitative literature is to indirectly calibrate 
the default costs in order to generate significant borrowing combined with fre-
quent default. The outcome is typically a very small cost in the low-endowment 
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states that encourages default, combined with a disproportionately larger cost in 
high-endowment states in order to sustain borrowing during booms. For example, 
if we use CE12’s functional form and extend it to our disaster state, we compute a 
deadweight cost (that is, the market value of debt that makes the government indif-
ferent between default or not) of ​0.70​, or sixty percent of our benchmark number. At 
this low cost, a saving equilibrium cannot be sustained even with one-period bonds. 
Hence, the competitive equilibrium will not support an absorbing Safe Zone at any 
maturity. The lowest cost for which we found both a saving and borrowing equilib-
rium at some maturity is ​0.88​.

These experiments reveal two important lessons for quantitative sovereign debt 
models. One is that multiplicity is possible in such models for a wide range of 
empirically relevant maturities, as long as default costs are not too small. The sec-
ond is that the practice of calibrating nonlinear default costs in order to match debt 
and default frequencies in the data may naturally lead to environments in which an 
absorbing Safe Zone is not constrained efficient, and hence a saving equilibrium 
may be unlikely to exist. However, such low default costs are not directly tied to 
empirical evidence and this practice may provide an incomplete picture regarding 
the vulnerability to self-fulfilling dilution.

VII.  Relationship to Other Sources of Multiplicity

We conclude with some comments on the relationship of our analysis to alter-
native models of multiplicity. The core driving force behind the multiplicity is the 
feedback between the price schedule and the government’s debt-issuance policy 
function. In particular, the incentives embedded in equilibrium prices to alter the 
outstanding stock of debt before legacy bonds mature. It is useful to contrast this 
mechanism with other environments that feature multiplicity.

The source of multiplicity studied above is distinct from the canonical Calvo 
(1988) multiplicity. A useful way to view the Calvo multiplicity is through the feasi-
bility of debt trajectories. That is, the mechanical link via the budget set between low 
prices of bond issuances today and high debt burdens tomorrow. In the two-period 
model of Calvo (1988), today’s bond prices (or the implied interest rate) deter-
mine the debt burden tomorrow, given the requirement to raise a certain amount of 
revenue in the initial period. Lorenzoni and Werning (2013)—henceforth, LW—
explores how to extend this mechanism to a fully dynamic model.

LW emphasizes that, in practice, governments have limited flexibility to alter 
fiscal policy at high frequencies. Most of their analysis therefore assumes the gov-
ernment follows a fiscal rule. However, they show that there is a natural counterpart 
to a fiscal rule in an environment with a fully optimizing government. In particular, 
they consider a government making optimal debt decisions subject to a minimum 
threshold for spending (which in their case arises naturally from the nonnegativity 
of spending).

LW multiplicity turns on whether the government is able to reduce its debt when 
facing low bond prices. In particular, they consider a situation where the bond price 
may be low enough that it is not feasible for the government to reduce debt. As 
a result, the government optimally chooses to accumulate debt instead, justifying 
the low bond prices. Importantly, they show how such a feasibility constraint on 
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expenditure can generate multiplicity even though it does not bind on the equilib-
rium path: once the governments decides to borrow, its expenditures are not con-
strained by the lower bound. But, as noted by LW, the potentially binding constraint 
is necessary to generate the multiplicity they study.

It is useful to highlight how the LW multiplicity differs from the one in our anal-
ysis. The equivalent of a minimum spending threshold in our environment is the 
consumption lower bound ​​ C 

¯
 ​​. In our equilibria, we assume that this lower bound 

does not bind.22 Moreover, even when facing the “borrowing” equilibrium prices, 
we implicitly assume that it is always feasible but not optimal for the government to 
save toward the Safe Zone.

This begs the question of whether the LW multiplicity arises if the consumption 
lower bound ​​ C 

¯
 ​​ is high enough. To answer this, let us now attempt to construct the 

LW multiplicity in our environment. First, consider parameters, including ​​ C 
¯

 ​​, such 
that the saving equilibrium exists. To construct an alternative LW “borrowing” equi-
librium, suppose that there exists a ​​b​0​​  ∈ ​ (​​ b ¯ ​​S​​, ​​b 

–
​​B​​)​​ such that reducing the debt is not 

feasible at the borrowing equilibrium prices, ​​ q 
¯

 ​​.23 That is,

(28)	 ​​ C 
¯

 ​  >  y − ​(r + δ​(1 − ​ q 
¯

 ​)​)​ ​b​0​​.​

This condition implies that, at a price of ​​ q 
¯

 ​​ and ​b  ≥ ​ b​0​​​, even if the government 
were to set its consumption to its lower bound, debt still strictly increases. Such a 
restriction is used by LW to sustain an alternative equilibrium for high enough debt 
levels: given that the government cannot reduce debt, it is now willing to follow 
the borrowing equilibrium prescription and accumulate debt until ​​​   b ​​B​​​ (justifying the 
price of ​​ q 

¯
 ​​).

However, in our environment, such an equilibrium cannot exist. To see this, if 
equation (28) holds, Assumption 1 (iv) implies that ​​b​0​​  > ​​ b 

–
​​B​​​.24 The reason is that 

if ​​b ˙ ​  ≤  0​ is not feasible at ​​ q 
¯

 ​​ and ​b  = ​ b​0​​​, then ​​b ˙ ​  >  0​ for all ​b  > ​ b​0​​​, including the 
upper bound ​​​b 

–
​​B​​​, violating the equilibrium conditions.25

Interestingly, while imposing a tight lower bound on consumption in our envi-
ronment does not generate the equilibrium studied by LW, it can produce a roll-over 
crisis à la Cole and Kehoe (2000)—henceforth, CK. Consider again a situation in 
which savings is an equilibrium. We ask the question of whether we can also sustain 
an equilibrium where the bond price switches from the savings equilibrium price to 
a price of zero within a subset of the domain ​​(​​ b ¯ ​​S​​, ​​b 

–
​​S​​)​​.

We conjecture the following “failed-auction” equilibrium: there exists a ​​b​0​​  ∈ ​
(​​ b ¯ ​​S​​, ​​b 

–
​​S​​)​​ and an equilibrium price ​q​ such that ​q​(b)​  =  0​ for ​b  >  ​b​0​​​, and ​q​(b)​  =  ​q​S​​​(b)​​ 

22 We introduced a lower bound on consumption only to have a well defined policy for the efficient allocation.
23 Note that, the savings equilibrium is not necessarily affected by the lower bound. That is, it could 

be the case that reducing the debt remains feasible at high prices. A sufficient condition in our case is that  
​​C ˆ ​​(b)​  =  y − (r + δ​(1 − ​q ˆ ​​(b)​)​b + ​q ˆ ​​(b)​​b ˙ ​  >  ​ C 

¯
 ​​ for ​b  ∈  ​(​​ b ¯ ​​S​​, ​b​0​​)​​, where ​​b ˙ ​​ is given by equation (36) in the online 

Appendix.
24 A remaining issue is what would happen if we were to drop Assumption 1 (iv) from our requirements. In that 

case, in the borrowing allocation, the maximal amount of debt, ​​​b 
–
​​B​​​ that could be feasibly sustained in a borrowing 

equilibrium is such that ​​ C 
¯

 ​  =  y − ​(r + δ​(1 − ​ q 
¯

 ​)​)​ ​​b 
–
​​B​​​. Inequality (28) still implies ​​b​0​​  >  ​​b 

–
​​B​​​.

25 Differently from us, LW assumes that there is a positive recovery rate upon default and imposes an upper 
bound on debt, at which point, a renegotiation between creditors and the government is automatically triggered. 
This upper bound guarantees that debt does not grow without bound in the “bad” equilibrium, even if it cannot be 
kept stationary absent renegotiation. 
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otherwise, where ​​q​S​​​ is the saving equilibrium price schedule. Note that this implies  
​​V​S​​​(​b​0​​)​  > ​  V 

¯
 ​​.

First, suppose ​​ C 
¯

 ​  <  y − ​(r + δ)​b​ for ​b  ∈ ​ (​​ b ¯ ​​S​​, ​​b 
–
​​S​​)​​. This implies that it is feasible 

for the government to reduce debt by paying coupons and maturing bonds. Now 
consider a ​b​ in the neighborhood above ​​b​0​​​. The government has the option to reduce 
debt to ​​b​0​​​ by paying off maturing bonds. The value of this strategy is arbitrarily 
close to ​​V​S​​​(​b​0​​)​​ as ​​b ​↓​​  ​b​0​​​​. As ​​V​S​​​(​b​0​​)​  > ​  V 

¯
 ​​, the government will not find it optimal 

to default in this neighborhood, invalidating zero as an equilibrium price. With no 
lower bound on consumption, the government can always act as its own lender of 
last resort in case of a rollover crisis, eliminating the CK multiplicity.

Alternatively, continuing the premise that the saving equilibrium exists, sup-
pose ​​ C 

¯
 ​​ satisfies the constraint (28) for a ​​b​0​​  ∈ ​ (​​ b ¯ ​​S​​, ​​b 

–
​​S​​)​​.26 For ​b  > ​ b​0​​​, there is no 

feasible option for the government other than default. This follows from the fact that 
(28) implies the government cannot pay off its coupon and maturing principal pay-
ments at ​b  = ​ b​0​​​ when the price is ​​ q 

¯
 ​  >  0​; hence, it cannot do so at ​b  > ​ b​0​​​ when 

facing a zero price. Thus, the government must default, validating the zero price in 
equilibrium.27

In summary, the difference between the equilibria we study and those of Calvo, 
CK, and LW reflect different views with regards to fiscal policy. This paper empha-
sizes the lack of constraints on fiscal policy, bringing limited commitment to future 
fiscal paths to the fore of the analysis. Calvo, CK, and LW emphasize the limitations 
of fiscal policy when responding to low bond prices. Both views are complementary, 
and highlight the potential fragility of sovereign debt markets to changes in lender 
expectations.

VIII.  Conclusion

This paper shows that debt dilution generates multiplicity in a standard sover-
eign debt framework. In particular, the extent of dilution in equilibrium depends 
on self-fulfilling expectations of future prices and future fiscal policy. A relatively 
impatient government, an intermediate debt maturity, and deadweight losses from 
default provide the conditions for multiplicity of equilibria. Importantly, these are 
common features of observed debt markets as well as the recent quantitative models 
proposed in the literature.

The framework presented above is designed for analytical clarity and thus involves 
some special assumptions. However, the mechanism at work is robust to including 
endowment fluctuations and risk aversion, which, while bringing the model closer 
to empirical debt markets, does not eliminate the self-fulfilling debt dilution iden-
tified in the tractable model. One can easily construct simple numerical examples 
of multiplicity with these elements. The quantitative model analyzed by Stangebye 

26 Note that this implies from Assumption 1 (iv) that ​​b​0​​  >  ​​b 
–
​​B​​​.

27 In a discrete time environment, with one-period bonds, the difference between the uniqueness in the 
Eaton-Gerstovitz model (Auclert and Rognlie 2016; Aguiar and Amador 2019) and the multiplicity in the Cole 
and Kehoe (1996) model is explained in terms of the timing within a period. In Eaton-Gersovitz, the government 
commits to default or not before issuing the new bonds. In Cole-Kehoe, the government first issues the new bonds, 
then decides to default or not. In continuous time, with long duration bonds, this within-period distinction is not 
relevant. This section highlights that, if there is a consumption lower bound, roll-over crises can indeed coexist with 
the type of multiplicity we identify in the continuous-time Eaton-Gersovitz framework. 
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(2015) also appears to be driven by a mechanism similar to that studied in this 
paper. Indeed, the fact that the Eaton-Gersovitz model is vulnerable to dilution is at 
the heart of the recent quantitative literature that attempts to match empirical sover-
eign debt crises. We show that the same force leads to indeterminacy. The fact that 
multiplicity stems from the incentives to dilute places novel restrictions on effective 
third-party interventions.

Appendix A: The Quantitative Model

In this Appendix, we provide additional details on the quantitative exercise dis-
cussed in Section VI. As noted, we follow Chatterjee and Eyigungor (2012) closely, 
and therefore provide only the main components.

Time is discrete and the model is calibrated to quarterly frequency.

Output Process.—A small open economy receives an endowment that is com-
prised of a persistent process ​​y​t​​​ plus an ​i.i.d.​ shock ​​m​t​​​. As in CE12, ​m​ is drawn from 
a truncated Normal with support ​​[− ​m – ​, ​m – ​]​​, mean zero, and variance ​​σ​ m​ 2 ​​. We follow 
CE12 and set ​​m – ​  =  0.006​ and ​​σ​m​​  =  0.003​. For the persistent component, begin 
with the AR(1) process

	​ ln ​y​t​​  = ​ (1 − ρ)​μ + ρln ​y​t−1​​ + ​ε​t​​,​

where ​ε​ has a mean-zero Normal distribution with variance ​​σ​ ε​ 2​​. We approximate 
this process with a ​200​-element grid spanning ​6​ standard deviations following the 
standard methodology of Tauchen.

We augment this process by adding a “disaster state” ​​y​dis​​​. The transition prob-
abilities to and from the disaster state follow: ​Pr​[​y​t+1​​  = ​ y​dis​​ | ​y​t​​  ≠ ​ y​dis​​]​  = ​ π​dis​​​ 
and ​Pr​[​y​t+1​​  ≠ ​ y​dis​​ | ​y​t​​  = ​ y​dis​​]​  = ​ π​rec​​​. Conditional on transitioning from disaster to 
nondisaster regimes, the nondisaster endowment is drawn from the nondisaster grid 
assuming probabilities computed from a discretized Normal distribution with mean ​​
(1 − ρ)​μ + ρ​y​dis​​​ and variance ​​σ​ ε​ 2​​. While in the disaster state, we set ​m  =  0​.

Following Barro and Ursa (2008), we set ​​π​dis​​​ to be ​0.97 percent​, and ​​y​dis​​​ to 
be ​0.20​ log points below the conditional mean of the normal AR(1) process. Barro 
and Ursa (2008) estimates the average length of a disaster to be ​3.5​ years, and hence 
we set ​​π​rec​​  =  7.14%​ in our quarterly model. The value of ​μ​ is set to normalize the 
unconditional mean of ​ln​(​y​t​​)​​ to ​0​. We then select ​ρ​ and ​​σ​ε​​​ to ensure that the combined 
AR(1)-plus-disaster-shock endowment process generates an autocorrelation coeffi-
cient of ​0.949​ and an innovation variance of ​0.027​, which are the targets used by 
CE12 to replicate their Argentina GDP sample. The resulting values are ​ρ  =  0.931​ 
and ​​σ​ε​​  =  0.0178​. The unconditional mean endowment is ​1.03​.

Default Cost.—The persistent endowment process for a government in default 
status, ​​y​​ d​​, is given by

	​ ​y​ t​ d​  = ​
{

​
​y​t​​ − max​{0, ​d​0​​ ​y​t​​ + ​d​1​​ ​y​ t​ 2​}​

​ 
if  ​y​t​​  ≠ ​ y​dis​​​    

​(1 − ​d​dis​​)​ ​y​dis​​
​ 

otherwise.
 ​​​
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The first line on the right-hand side concerns nondisaster states and is the functional 
form used by CE12; we follow them by setting ​​d​0​​  =  − 0.188​ and ​​d​1​​  =  0.246​. The 
second line concerns the disaster state, and, as discussed in Section VI, ​​d​dis​​  =  0.045​. 
Following CE12 we assume the government exits default status with constant haz-
ard rate ​0.0385​. Following CE12, while in default, if ​​y​t​​  ≠ ​ y​dis​​​, then ​​m​t​​​ is drawn 
from its usual process—the one exception being in the first period of default, in 
which case ​​m​t​​  =  − ​m – ​​ for computational reasons.

Government Objective.—The government has a discount factor ​β  =  0.95402​ 
and utility ​u​(c)​  = ​ c​​ 1−γ​/​(1 − γ)​​ with ​γ  =  2​. Again, we follow CE12 for the values 
of ​β​ and ​γ​.

Bonds, Coupons, and Maturity.—Bonds mature with probability ​δ​ and pay a 
coupon ​κ​ every period prior to maturity. In the benchmark, we follow CE12 and 
set ​δ  =  1/20​ and ​κ  =  0.03​. Lenders are risk-neutral and are willing to borrow and 
lend at an expected net interest rate of ​r  =  0.01​. Therefore, the risk-free price is

	​ ​q​​ ∗​  = ​ 
δ + ​(1 − δ)​κ

 ___________ 
r + δ  ​  =  1.308.​

Whenever we recompute the model with different maturity, we adjust ​κ​ to keep ​​q​​ ∗​​ 
at this value.

Computation Algorithm.—To compute the model, we let debt choices be on a 
discrete grid contained on the interval ​​[0, 1.89]​​.28

The computational algorithm for a saving equilibrium is motivated by our theoret-
ical analysis. It begins by conjecturing that there exists a Safe Zone, where the price 
is risk free; that is, a ​​​b ¯ ​​S​​​ such that the equilibrium price ​q​(y, b)​  = ​ q​​ ∗​​ for all ​b  ≤ ​​ b ¯ ​​S​​​. For a candidate ​​​b ¯ ​​S​​​, we compute the value of repayment for ​b  ≤ ​​ b ¯ ​​S​​​ imposing that 
debt remains below ​​​b ¯ ​​S​​​ and the price is the risk-free price.

This restricted government problem is solved using value function iteration. 
Let ​​V​S​​​(b, y)​​ denote the associated value function. In a saving equilibrium, ​​​b ¯ ​​S​​​ is the 
debt level that equates the value of repayment to the value of default in the disaster 
state. Hence, let ​​V​​ D​​(​y​dis​​)​  ≡ ​ V​S​​​(​​b ¯ ​​S​​, ​y​dis​​)​​, and associated with this value of default is 
a punishment ​​d​dis​​​ in terms of lost endowment.

Given such value of ​​​b ¯ ​​S​​​, we solve the government’s problem on the rest of the 
domain ​b  ∈ ​ (​​b ¯ ​​S​​, ​b 

–
​]​​, this time without restricting the choice set for ​b​, and taking as 

given the previously obtained values and (risk-free) prices for ​b  ≤ ​​ b ¯ ​​S​​​. We follow 
the standard procedure of iterating on both values and prices until convergence. The 
final step is to check whether, given the equilibrium price schedule ​q​ computed for 
the entire domain, the government prefers to remain in the Safe Zone. This is done 
by recomputing the government’s problem given the conjectured equilibrium ​q​ and 
verifying the value and price functions are consistent with optimization and the 
lenders’ break-even constraint. This completes the construction for a candidate ​​​b 

¯
 ​​S​​​.

28 For the computation, we use 946 points for this grid, including the boundaries.
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To compute the borrowing equilibrium, we follow the same algorithm of CE12.29

Results.—Figure A.1 and A.2 show the debt policy and price functions for the 
computed equilibria. As can be seen in Figure A.1, the Safe Zone in the saving 
equilibrium is larger than in the borrowing. The policy functions in the saving equi-
librium are such that if we start in the Safe Zone, debt never exits the Safe Zone. 
The policy functions in the borrowing equilibrium are such that if we start in the 
Safe Zone, debt will eventually leave it. Hence, just as in the theoretical analysis and 
shown in Figure A.2, the Safe Zone in the saving equilibrium features a risk-free 
price, while the Safe Zone in the borrowing equilibrium features a price strictly 
below the risk-free price, reflecting the future risk of default.

Table  A.1 reports the key business cycle moments for our two equilibria. To 
obtain these, we simulate the model ​1,000​ times for ​20,000​ periods. We discard the 
first ​1,000​ periods of each sample. If the government defaults in period ​t​ and regains 
access in period ​t + k​, we discard simulated observations for ​​[t, t + k + 20]​​. This is 
the same procedure used by CE12.

Repeating this numerical exercise for different values of the maturity parameter, 
we confirm that the two equilibria exist for maturity values between 9 and 33 quar-
ters (that is, for all ​δ  ∈ ​ {1/33, 1/32, …, 1/9}​​).

The moments from the saving equilibrium reflect that the Safe Zone is absorbing. 
Recall that the Safe Zone has an upper threshold of 1.16, which is the same as the 
unconditional mean. This reflects the relative impatience of the government with 
respect to the risk free interest rate.

29 Specifically, we initialize prices at zero and use a very high smoothing (​>0.95​) parameter when updating. 

Figure A.1. Simulation Results: Policy Functions

Notes: The figure depicts the debt policy functions for the computed saving and borrowing equilibrium. Each panel 
shows the equilibrium borrowing policy functions as a function of the current debt level, ​b​, for two values of the 
endowment state: the mean of the AR1 process (solid), ​μ​, and the disaster state, ​​y​dis​​​ (dashed). The shaded area rep-
resents the Safe Zone—the region of debt such that default does not occur this period for any realization of the 
endowment. Each of the policy functions in both panels are averaged across potential realizations of the ​m​ shock 
conditional on no-default. The vertical portion of each policy function represents the point after which default is 
optimal in that state for all realizations of the ​m​ shock.
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The moments from the borrowing equilibrium resemble those typically seen in 
the literature, such as those reported in CE12. As noted in the text, the presence of a 
disaster state and the associated punishment for default in that state support a higher 
mean debt-to-income ratio than CE12. One notable difference is that spreads are 
positively correlated with the endowment, while in CE12 they are negatively cor-
related (as they are in the data). This reflects that in our environment, this correlation 
is driven by the difference in spreads between the normal endowment regime and 
the disaster state.30

30 In the disaster state, the government defaults if the face value of debt is greater than ​0.80​, when the mean face 
value in the simulation is ​0.96​. Thus the disaster-state spread is either close to zero (when debt is low) or undefined 
(when debt is high), generating a positive correlation between the spread and the endowment overall. When we 
condition on nondisaster states, the correlation between spreads and the endowment changes sign and is ​− 0.2​, 
closer to values discussed in CE12. 

Figure A.2. Simulation Results: Price Functions

Notes: The figure depicts the price functions for the computed saving and borrowing equilibrium. Each panel shows 
the price functions as a function of the next period debt level, ​b​′, for two values of the endowment state: the mean 
of the AR1 process (solid), ​μ​, and the disaster state, ​​y​dis​​​ (dashed). The shaded area represents the Safe Zone—the 
region of debt such that default does not occur next period for any realization of the endowment.
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Table A.1—Business Cycle Moments for Quantitative Model

Moment Saving equilibrium Borrowing equilibrium

​E​(r − ​r​​  f  ​)​​ 0 0.070

​σ​(r − ​r​​  f​  )​​ 0 0.010

​σ​(log​(c)​)​/σ​(log​(y)​)​​ 1.01 1.07

​σ​(nx/y)​​ 0.001 0.014

​corr​(nx / y, log​(y)​)​​ −0.99 −0.15

​corr​(r − ​r​​  f​, log​(y)​)​​ NA 0.23

​corr​(r − ​r​​  f​, nx/y)​​ NA 0.69

E(face value debt/GDP) 0.88 0.96
E(market value debt/GDP) 1.16 0.99
Default frequency (quarterly) 0 0.016

Notes: The values of ​y​ and ​c​ refer to the levels of output (inclusive of ​m​) and consumption. Net exports (​nx​) is 
defined as ​y − c​. All relevant moments use the annualized spreads, denoted by ​r − ​r​​  f​​. The operators ​E​, ​σ​, and ​corr​ 
refer to the mean, standard deviation, and correlation computed following the methodology of CE12.
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