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A Existence and uniqueness of a @> and a continuous @2

Here we show that given {�g }∞g=0, there exists a unique @> and a unique continuous @2 that satisfy
the integral equations described in the main body of the paper.

Instead of working with vector-valued operators, the idea of the proof is to substitute the
equation for@> into@2 . �en, to prove the existence, uniqueness and continuity of@2 , we construct
a contraction ) mapping the space of bounded, continuous functions to itself and where @2 is a
�xed point of this mapping.

First, de�ne ) >{5 }(g) as

) >{5 }(g) =
∫ ∞

0

[ (∫ B

0
(8 + _)4−(8+_)B̃dB̃ + 4−(8+_)B 5 (g + B)

)
(1 − �g (g + B))+∫ B

0

(∫ B̃

0
(8 + _)4−(8+_)ΔdΔ

)
d�g (g + B̃)

]
n4−nBdB . (1)

In words,) >{5 }(g) is the value of a bond given an opportunistic government where upon a type
switch, the owner receives an arbitrary payo� 5 (·) ∈ [0, 1].

Next likewise, de�ne ) 2{6}(g) as

) 2{6}(g) = 8 + _
8 + _ + X +

∫ ∞

0
4−(8+_+X)B6(g + B)XdB . (2)

In words, ) 2{6}(g) is the value of a bond given a commitment type government where upon a
type switch, the owner receives an arbitrary payo� 6(·) ∈ [0, 1].

Finally, let) {5 }(g) ≡ ) 2{) >{5 }}(g). Here,) is the value of a bond given a commitment type
government where upon two type switches (from commitment to opportunistic and back again),
the owner receives an arbitrary payo� 5 (·) ∈ [0, 1].

We now proceed to showing that) > and) 2 are each well de�ned, and that) is a contraction
on the space of bounded continuous functions. First, we can rewrite ) 2 and ) > as:

) 2{6}(g) = @ + X�0(−g)
∫ ∞

g

�0(B)6(B)3B

) >{5 }(B) = n
∫ ∞

0

∫ B̃

0
(1 − �B (B + B̂))4−nB̃3�1(B̂)3B̃ + n

∫ ∞

0
�2(B̃) 5 (B + B̃) (1 − �B (B + B̃))3B̃
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where

@ =
8 + _

8 + _ + X , �0(B) = 4−(8+_+X)B, �1(B) =
(
1 − 4−(8+_)B

)
, �2(B) = 4−(8+_+n)B

and where we used integration by parts to rewrite ) > .
Plugging the equation for) > back into) 2 we obtain that @2 is a �xed point of the operator,) ,

now wri�en as:

) {5 }(g) = 60(g) + Xn�0(−g)
∫ ∞

g

∫ ∞

0
61(B, B̃)3B̃3B

where 61(B, B̃) = �0(B)�2(B̃) (1 − �B (B + B̃)) 5 (B + B̃)

and where

60(g) = @ + Xn�0(−g)
∫ ∞

g

∫ ∞

0

∫ B̃

0
�0(B)4−nB̃ (1 − �B (B + B̂))3�1(B̂)3B̃3B

We now argue that for any bounded non-negative continuous function 5 : R+ → R+, the
iterated integral,

∫ ∞
0

∫ ∞
0 61(B, B̃)3B̃3B , exists. We show this in three steps.

(a) Given that 5 is continuous, it follows that the function 61 is measurable in R2
+, given our

assumption that �B (B + B̃) is measurable, together with �0, �2 and 5 continuous (61 is the
product of measurable functions, and thus it is itself measurable).

(b) �e integral
∫ ∞

0 61(B, B̃)3B̃ exists given B ∈ R+. 5 non-negative and bounded implies that
there exists a " > 0 such that 0 ≤ 5 ≤ " . In addition, that �B (B + B̃) ∈ [0, 1] implies
0 ≤ 61(B, B̃) ≤ �0(B)�2(B̃)" ≡ 6̄(B, B̃). Given B ∈ R+, the function 6̄(B, ·) is integrable in R+,
and it thus follows that 61(B, ·) is bounded by two integrable functions, and thus it is also
integrable.

(c) From the previous step, 0 ≤
∫ ∞

0 61(B, B̃)3B̃3B ≤
∫ ∞

0 �0(B)�2(B̃)"3B̃ . �at is, the function
62(B) =

∫ ∞
0 61(B, B̃)3B̃ is bounded between 0 and

∫ ∞
0 6̄(B, B̃)3B̃ = 6̂(B). Given that 6̂(B) is

integrable in R+, it provides an integrable upperbound, and it follows that the iterated
integral,

∫ ∞
0

∫ ∞
0 61(B, B̃)3B̃3B , exists.

A similar argument shows that the iterated integral in the de�nition of 60(g) exists.
Let � denote the space of continuous functions 5 : R+ → [@, 1] with the sup norm. Note that

this is a complete metric space. We make the following two observations about the operator ) :

1) ) maps � into itself.
We have already shown that for any bounded non-negative and continous 5 ,) {5 }(g) exists.
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Note also that ) {5 }(g) ≥ @ ≥ 0 and

) {5 }(g)

≤ @ + Xn
[∫ ∞

g

∫ ∞

0

∫ B̃

0
�0(B − g)4−nB̃3�1(B̂)3B̃3B +

∫ ∞

g

∫ ∞

0
�0(B − g)�2(B̃)3B̃3B

]
= 1

where the inequality follows from using that 0 ≤ 5 ≤ 1 and 0 ≤ �B ≤ 1. So ) {5 } : R+ →
[@, 1].
�e continuity of) {5 } follows from the fact that 60(g) is continuous (as it is the sum a con-
stant and the product of two continuous functions) together with the fact that

∫ ∞
g

∫ ∞
0 61(B, B̃)3B̃3B

is an absolutely continuous function of g .

2) ) is a contraction mapping.
Consider two functions 5 and 6. �en we have that

) {5 }(g) −) {6}(g)

= Xn

∫ ∞

g

∫ ∞

0
�0(B − g)�2(B̃) (1 − �B (B + B̃)) (5 (B + B̃) − 6(B + B̃))3B̃3B

Using that �B (B + B̃) ∈ [0, 1] we get

|) {5 }(g) −) {6}(g) | ≤ |5 − 6 |nX
∫ ∞

g

∫ ∞

0
�0(B − g)�2(B̃)3B̃3B

=
nX

(8 + _ + n) (8 + _ + X) |5 − 6 |

�us ) is a contraction mapping with modulus n
8+_+n ×

X
8+_+X < 1.

It follows by the contraction mapping theorem that there exists a unique bounded and con-
tinuous function @2 such that ) {@2} = @2 and where @2 (g) ∈ [@, 1] for all g ≥ 0.

Given the existence and uniqueness of a continuous function @2 we can substitute back in the
@> equation and obtain the existence and uniqueness of @> . It is straightforward to show that
@> (B) ∈ [0, 1] for all B .

B Continuity of @> given construction requirement (16)
We have already shown above that @2 is continuous in any equilibrium. �e continuity of @>
cannot be guaranteed in the same fashion (that is, independently of {�g }). However, we can
show that for any family {�g } that satis�es our construction requirement in (16), @> must be
continuous.
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From the proof in Appendix A, recall that @> can be wri�en as:

@> (B) = n
∫ ∞

0

∫ B̃

0
(1 − �B (B + B̂))4−nB̃3�1(B̂)3B̃ + n

∫ ∞

0
�2(B̃)@2 (B + B̃) (1 − �B (B + B̃))3B̃

where �1(B) =
(
1 − 4−(8+_)B

)
, and �2(B) = 4−(8+_+n)B .

For a family {�g } that satis�es our construction requirement in (16), the above implies that
@> (B) = 0 for all B ≥ ) , as �B (B + B̂) = 1 for all B ≥ ) and B̂ ≥ 0.

For all B ≤ ) , we have then that

@> (B) = n
∫ )

B

∫ B̃

B

(1 − �B (B̂))4−n (B̃−B)3�1(B̂ − B)3B̃ + n
∫ )

B

�2(B̃ − B)@2 (B̃) (1 − �B (B̃))3B̃

which implies that the limB↑) @
> (B) = 0. �us @> is continuous at ) .

Finally, using condition (16), and le�ing Ĝ (B) = G (B)
1−d (B) , we have that for B < ) ,

@> (B) = n
∫ )

B

∫ B̃

B

4−
∫ B̂

B
Ĝ (g)3g4−n (B̃−B)3�1(B̂ − B)3B̃ + n

∫ )

B

�2(B̃ − B)@2 (B̃)4−
∫ B̃

B
Ĝ (g)3g3B̃

which guarantees that @> is a continuous function of B for B ∈ [0,) ).
Hence, we have shown that the function@> (B) associated with a family of default distributions

that satisfy (16) must be continuous for all B ≥ 0.

C � given by (17) satis�es Assumption 1
We now show that � in equation (17) satis�es the conditions in Assumption 1 given our param-
eters.

For part(i): Lipschitz continuity. Consider two points G0 = (10, @0) and G1 = (11, @1) in X.
Let �0 = � (10, @0) and �1 = � (11, @1). Let Ã = A + _ and 8̃ = 8 + _. Let [0]+ = max{0, 0}, and for
our parameters, Ã > 8̃ . �en,

|�0 − �1 | =
��[Ã − 8̃/@0]+(~ − 10) − [Ã − 8̃/@1]+(~ − 11)

��
=

�� ([Ã − 8̃/@0]+ − [Ã − 8̃/@1]+
)
(~ − 10) + [Ã − 8̃/@1]+(11 − 10)

��
≤ Ã

2

8̃
|@0 − @1 | + |Ã − 8 | × |10 − 11 | ≤ max{Ã 2/8̃, A★ − 8} × (|@0 − @1 | + |10 − 11 |)

≤
√

2 max{Ã 2/8̃, A★ − 8}|G0 − G1 |

where the �rst inequality follows from the facts that (i) Ã 2/8̃ is the highest (absolute value) slope
of the function 6(@) = [Ã − 8̃/@]+ given Ã > 8̃ and (ii) [Ã − 8̃/@]+ ≤ Ã − 8̃ as @ ≤ 1. �e second
inequality follows from 0 + 1 ≤

√
2
√
02 + 12) for 0 ≥ 0, 1 ≥ 0. �us " ≡

√
2 max{Ã 2/8̃, A★ − 8} is

the Lipschitz constant for all all G0, G1 ∈ X.
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Parts (ii) and (iii): �ese are immediate.

Parts (iv): In this case, @ = 8+_
A+_ , as � (0, @) = 0 for all @ ≤ @ and � (0, @) > 0 for all @ > @. Now

note that for our parameter values @ = 0.6 < 8+_
8+_+X+n = 0.875.

Part (v): � (�, 1) = 0 given that � = ~.

Part (vi): � > 0 requires @ ∈ (@, 1] and 1 ∈ [0, ~). In this case, � (1, @) =
(
A★ + _ − 8+_

@

)
(~ − 1)

which is di�erentiable in this domain.
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