Online Appendix to "Reputation and Sovereign Default"

By Manuel Amador and Christopher Phelan

A Existence and uniqueness of a q^{0} and a continuous q^{c}

Here we show that given $\left\{F_{\tau}\right\}_{\tau=0}^{\infty}$, there exists a unique q^{o} and a unique continuous q^{c} that satisfy the integral equations described in the main body of the paper.

Instead of working with vector-valued operators, the idea of the proof is to substitute the equation for q^{o} into q^{c}. Then, to prove the existence, uniqueness and continuity of q^{c}, we construct a contraction T mapping the space of bounded, continuous functions to itself and where q^{c} is a fixed point of this mapping.

First, define $T^{o}\{f\}(\tau)$ as

$$
\begin{align*}
& T^{o}\{f\}(\tau)=\int_{0}^{\infty}\left[\left(\int_{0}^{s}(i+\lambda) e^{-(i+\lambda) \tilde{s}} \mathrm{~d} \tilde{s}+e^{-(i+\lambda) s} f(\tau+s)\right)\left(1-F_{\tau}(\tau+s)\right)+\right. \\
&\left.\int_{0}^{s}\left(\int_{0}^{\tilde{s}}(i+\lambda) e^{-(i+\lambda) \Delta} \mathrm{d} \Delta\right) \mathrm{d} F_{\tau}(\tau+\tilde{s})\right] \epsilon e^{-\epsilon s} \mathrm{~d} s \tag{1}
\end{align*}
$$

In words, $T^{o}\{f\}(\tau)$ is the value of a bond given an opportunistic government where upon a type switch, the owner receives an arbitrary payoff $f(\cdot) \in[0,1]$.

Next likewise, define $T^{c}\{g\}(\tau)$ as

$$
\begin{equation*}
T^{c}\{g\}(\tau)=\frac{i+\lambda}{i+\lambda+\delta}+\int_{0}^{\infty} e^{-(i+\lambda+\delta) s} g(\tau+s) \delta \mathrm{d} s \tag{2}
\end{equation*}
$$

In words, $T^{c}\{g\}(\tau)$ is the value of a bond given a commitment type government where upon a type switch, the owner receives an arbitrary payoff $g(\cdot) \in[0,1]$.

Finally, let $T\{f\}(\tau) \equiv T^{c}\left\{T^{o}\{f\}\right\}(\tau)$. Here, T is the value of a bond given a commitment type government where upon two type switches (from commitment to opportunistic and back again), the owner receives an arbitrary payoff $f(\cdot) \in[0,1]$.

We now proceed to showing that T^{o} and T^{c} are each well defined, and that T is a contraction on the space of bounded continuous functions. First, we can rewrite T^{c} and T^{o} as:

$$
\begin{aligned}
& T^{c}\{g\}(\tau)=\underline{q}+\delta H_{0}(-\tau) \int_{\tau}^{\infty} H_{0}(s) g(s) d s \\
& T^{o}\{f\}(s)=\epsilon \int_{0}^{\infty} \int_{0}^{\tilde{s}}\left(1-F_{s}(s+\hat{s})\right) e^{-\epsilon \tilde{s}} d H_{1}(\hat{s}) d \tilde{s}+\epsilon \int_{0}^{\infty} H_{2}(\tilde{s}) f(s+\tilde{s})\left(1-F_{s}(s+\tilde{s})\right) d \tilde{s}
\end{aligned}
$$

where

$$
\underline{q}=\frac{i+\lambda}{i+\lambda+\delta}, H_{0}(s)=e^{-(i+\lambda+\delta) s}, H_{1}(s)=\left(1-e^{-(i+\lambda) s}\right), H_{2}(s)=e^{-(i+\lambda+\epsilon) s}
$$

and where we used integration by parts to rewrite T^{o}.
Plugging the equation for T^{o} back into T^{c} we obtain that q^{c} is a fixed point of the operator, T, now written as:

$$
\begin{aligned}
T\{f\}(\tau)= & g_{0}(\tau)+\delta \epsilon H_{0}(-\tau) \int_{\tau}^{\infty} \int_{0}^{\infty} g_{1}(s, \tilde{s}) d \tilde{s} d s \\
& \text { where } g_{1}(s, \tilde{s})=H_{0}(s) H_{2}(\tilde{s})\left(1-F_{s}(s+\tilde{s})\right) f(s+\tilde{s})
\end{aligned}
$$

and where

$$
g_{0}(\tau)=\underline{q}+\delta \epsilon H_{0}(-\tau) \int_{\tau}^{\infty} \int_{0}^{\infty} \int_{0}^{\tilde{s}} H_{0}(s) e^{-\epsilon \tilde{s}}\left(1-F_{s}(s+\hat{s})\right) d H_{1}(\hat{s}) d \tilde{s} d s
$$

We now argue that for any bounded non-negative continuous function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, the iterated integral, $\int_{0}^{\infty} \int_{0}^{\infty} g_{1}(s, \tilde{s}) d \tilde{s} d s$, exists. We show this in three steps.
(a) Given that f is continuous, it follows that the function g_{1} is measurable in \mathbb{R}_{+}^{2}, given our assumption that $F_{s}(s+\tilde{s})$ is measurable, together with H_{0}, H_{2} and f continuous (g_{1} is the product of measurable functions, and thus it is itself measurable).
(b) The integral $\int_{0}^{\infty} g_{1}(s, \tilde{s}) d \tilde{s}$ exists given $s \in \mathbb{R}_{+} . f$ non-negative and bounded implies that there exists a $M>0$ such that $0 \leq f \leq M$. In addition, that $F_{s}(s+\tilde{s}) \in[0,1]$ implies $0 \leq g_{1}(s, \tilde{s}) \leq H_{0}(s) H_{2}(\tilde{s}) M \equiv \bar{g}(s, \tilde{s})$. Given $s \in \mathbb{R}_{+}$, the function $\bar{g}(s, \cdot)$ is integrable in \mathbb{R}_{+}, and it thus follows that $g_{1}(s, \cdot)$ is bounded by two integrable functions, and thus it is also integrable.
(c) From the previous step, $0 \leq \int_{0}^{\infty} g_{1}(s, \tilde{s}) d \tilde{s} d s \leq \int_{0}^{\infty} H_{0}(s) H_{2}(\tilde{s}) M d \tilde{s}$. That is, the function $g_{2}(s)=\int_{0}^{\infty} g_{1}(s, \tilde{s}) d \tilde{s}$ is bounded between 0 and $\int_{0}^{\infty} \bar{g}(s, \tilde{s}) d \tilde{s}=\hat{g}(s)$. Given that $\hat{g}(s)$ is integrable in \mathbb{R}_{+}, it provides an integrable upperbound, and it follows that the iterated integral, $\int_{0}^{\infty} \int_{0}^{\infty} g_{1}(s, \tilde{s}) d \tilde{s} d s$, exists.

A similar argument shows that the iterated integral in the definition of $g_{0}(\tau)$ exists.
Let B denote the space of continuous functions $f: \mathbb{R}_{+} \rightarrow[\underline{q}, 1]$ with the sup norm. Note that this is a complete metric space. We make the following two observations about the operator T :

1) T maps B into itself.

We have already shown that for any bounded non-negative and continous $f, T\{f\}(\tau)$ exists.

Note also that $T\{f\}(\tau) \geq \underline{q} \geq 0$ and

$$
\begin{aligned}
& T\{f\}(\tau) \\
& \quad \leq \underline{q}+\delta \epsilon\left[\int_{\tau}^{\infty} \int_{0}^{\infty} \int_{0}^{\tilde{s}} H_{0}(s-\tau) e^{-\epsilon \tilde{s}} d H_{1}(\hat{s}) d \tilde{s} d s+\int_{\tau}^{\infty} \int_{0}^{\infty} H_{0}(s-\tau) H_{2}(\tilde{s}) d \tilde{s} d s\right]
\end{aligned}
$$

$$
=1
$$

where the inequality follows from using that $0 \leq f \leq 1$ and $0 \leq F_{s} \leq 1$. So $T\{f\}: \mathbb{R}_{+} \rightarrow$ [$\underline{q}, 1]$.
The continuity of $T\{f\}$ follows from the fact that $g_{0}(\tau)$ is continuous (as it is the sum a constant and the product of two continuous functions) together with the fact that $\int_{\tau}^{\infty} \int_{0}^{\infty} g_{1}(s, \tilde{s}) d \tilde{s} d s$ is an absolutely continuous function of τ.
2) T is a contraction mapping.

Consider two functions f and g. Then we have that

$$
\begin{aligned}
& T\{f\}(\tau)-T\{g\}(\tau) \\
& \qquad=\delta \epsilon \int_{\tau}^{\infty} \int_{0}^{\infty} H_{0}(s-\tau) H_{2}(\tilde{s})\left(1-F_{s}(s+\tilde{s})\right)(f(s+\tilde{s})-g(s+\tilde{s})) d \tilde{s} d s
\end{aligned}
$$

Using that $F_{s}(s+\tilde{s}) \in[0,1]$ we get

$$
\begin{aligned}
|T\{f\}(\tau)-T\{g\}(\tau)| \leq|f-g| \epsilon \delta \int_{\tau}^{\infty} \int_{0}^{\infty} H_{0}(s-\tau) H_{2}(\tilde{s}) & d s \tilde{s} d s \\
& =\frac{\epsilon \delta}{(i+\lambda+\epsilon)(i+\lambda+\delta)}|f-g|
\end{aligned}
$$

Thus T is a contraction mapping with modulus $\frac{\epsilon}{i+\lambda+\epsilon} \times \frac{\delta}{i+\lambda+\delta}<1$.
It follows by the contraction mapping theorem that there exists a unique bounded and continuous function q^{c} such that $T\left\{q^{c}\right\}=q^{c}$ and where $q^{c}(\tau) \in[\underline{q}, 1]$ for all $\tau \geq 0$.

Given the existence and uniqueness of a continuous function q_{c} we can substitute back in the q^{0} equation and obtain the existence and uniqueness of q^{o}. It is straightforward to show that $q^{o}(s) \in[0,1]$ for all s.

B Continuity of q^{0} given construction requirement (16)

We have already shown above that q^{c} is continuous in any equilibrium. The continuity of q^{o} cannot be guaranteed in the same fashion (that is, independently of $\left\{F_{\tau}\right\}$). However, we can show that for any family $\left\{F_{\tau}\right\}$ that satisfies our construction requirement in (16), q^{o} must be continuous.

From the proof in Appendix A, recall that q^{o} can be written as:

$$
q^{o}(s)=\epsilon \int_{0}^{\infty} \int_{0}^{\tilde{s}}\left(1-F_{s}(s+\hat{s})\right) e^{-\epsilon \tilde{s}} d H_{1}(\hat{s}) d \tilde{s}+\epsilon \int_{0}^{\infty} H_{2}(\tilde{s}) q^{c}(s+\tilde{s})\left(1-F_{s}(s+\tilde{s})\right) d \tilde{s}
$$

where $H_{1}(s)=\left(1-e^{-(i+\lambda) s}\right)$, and $H_{2}(s)=e^{-(i+\lambda+\epsilon) s}$.
For a family $\left\{F_{\tau}\right\}$ that satisfies our construction requirement in (16), the above implies that $q_{o}(s)=0$ for all $s \geq T$, as $F_{s}(s+\hat{s})=1$ for all $s \geq T$ and $\hat{s} \geq 0$.

For all $s \leq T$, we have then that

$$
q^{o}(s)=\epsilon \int_{s}^{T} \int_{s}^{\tilde{s}}\left(1-F_{s}(\hat{s})\right) e^{-\epsilon(\tilde{s}-s)} d H_{1}(\hat{s}-s) d \tilde{s}+\epsilon \int_{s}^{T} H_{2}(\tilde{s}-s) q^{c}(\tilde{s})\left(1-F_{s}(\tilde{s})\right) d \tilde{s}
$$

which implies that the $\lim _{s \uparrow T} q^{o}(s)=0$. Thus q^{o} is continuous at T.
Finally, using condition (16), and letting $\hat{x}(s)=\frac{x(s)}{1-\rho(s)}$, we have that for $s<T$,

$$
q^{o}(s)=\epsilon \int_{s}^{T} \int_{s}^{\tilde{s}} e^{-\int_{s}^{\hat{s}} \hat{x}(\tau) d \tau} e^{-\epsilon(\tilde{s}-s)} d H_{1}(\hat{s}-s) d \tilde{s}+\epsilon \int_{s}^{T} H_{2}(\tilde{s}-s) q^{c}(\tilde{s}) e^{-\int_{s}^{\tilde{s}} \hat{x}(\tau) d \tau} d \tilde{s}
$$

which guarantees that q^{0} is a continuous function of s for $s \in[0, T)$.
Hence, we have shown that the function $q^{o}(s)$ associated with a family of default distributions that satisfy (16) must be continuous for all $s \geq 0$.

C H given by (17) satisfies Assumption 1

We now show that H in equation (17) satisfies the conditions in Assumption 1 given our parameters.

For part(i): Lipschitz continuity. Consider two points $x_{0}=\left(b_{0}, q_{0}\right)$ and $x_{1}=\left(b_{1}, q_{1}\right)$ in \mathbb{X}. Let $H_{0}=H\left(b_{0}, q_{0}\right)$ and $H_{1}=H\left(b_{1}, q_{1}\right)$. Let $\tilde{r}=r+\lambda$ and $\tilde{i}=i+\lambda$. Let $[a]^{+}=\max \{a, 0\}$, and for our parameters, $\tilde{r}>\tilde{i}$. Then,

$$
\begin{aligned}
\left|H_{0}-H_{1}\right| & =\left|\left[\tilde{r}-\tilde{i} / q_{0}\right]^{+}\left(y-b_{0}\right)-\left[\tilde{r}-\tilde{i} / q_{1}\right]^{+}\left(y-b_{1}\right)\right| \\
& =\left|\left(\left[\tilde{r}-\tilde{i} / q_{0}\right]^{+}-\left[\tilde{r}-\tilde{i} / q_{1}\right]^{+}\right)\left(y-b_{0}\right)+\left[\tilde{r}-\tilde{i} / q_{1}\right]^{+}\left(b_{1}-b_{0}\right)\right| \\
& \leq \frac{\tilde{r}^{2}}{\tilde{i}}\left|q_{0}-q_{1}\right|+|\tilde{r}-i| \times\left|b_{0}-b_{1}\right| \leq \max \left\{\tilde{r}^{2} / \tilde{i}, r^{\star}-i\right\} \times\left(\left|q_{0}-q_{1}\right|+\left|b_{0}-b_{1}\right|\right) \\
& \leq \sqrt{2} \max \left\{\tilde{r}^{2} / \tilde{i}, r^{\star}-i\right\}\left|x_{0}-x_{1}\right|
\end{aligned}
$$

where the first inequality follows from the facts that (i) $\tilde{r}^{2} / \tilde{i}$ is the highest (absolute value) slope of the function $g(q)=[\tilde{r}-\tilde{i} / q]^{+}$given $\tilde{r}>\tilde{i}$ and (ii) $[\tilde{r}-\tilde{i} / q]^{+} \leq \tilde{r}-\tilde{i}$ as $q \leq 1$. The second inequality follows from $a+b \leq \sqrt{2} \sqrt{\left.a^{2}+b^{2}\right)}$ for $a \geq 0, b \geq 0$. Thus $M \equiv \sqrt{2} \max \left\{\tilde{r}^{2} / \tilde{i}, r^{\star}-i\right\}$ is the Lipschitz constant for all all $x_{0}, x_{1} \in \mathbb{X}$.

Parts (ii) and (iii): These are immediate.
Parts (iv): In this case, $\underline{q}=\frac{i+\lambda}{r+\lambda}$, as $H(0, q)=0$ for all $q \leq \underline{q}$ and $H(0, q)>0$ for all $q>\underline{q}$. Now note that for our parameter values $\underline{q}=0.6<\frac{i+\lambda}{i+\lambda+\delta+\epsilon}=0.875$.
$\operatorname{Part} \mathbf{(v) : ~} \quad H(\bar{B}, 1)=0$ given that $\bar{B}=y$.
Part (vi): $H>0$ requires $q \in(\underline{q}, 1]$ and $b \in[0, y)$. In this case, $H(b, q)=\left(r^{\star}+\lambda-\frac{i+\lambda}{q}\right)(y-b)$ which is differentiable in this domain.

