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A Existence and uniqueness of a ¢° and a continuous ¢°

Here we show that given {F;} 7, there exists a unique ¢° and a unique continuous ¢° that satisfy
the integral equations described in the main body of the paper.

Instead of working with vector-valued operators, the idea of the proof is to substitute the
equation for ¢° into ¢°. Then, to prove the existence, uniqueness and continuity of ¢°, we construct
a contraction T mapping the space of bounded, continuous functions to itself and where ¢° is a
fixed point of this mapping.

First, define T°{f}(7) as
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In words, T°{f}(r) is the value of a bond given an opportunistic government where upon a type
switch, the owner receives an arbitrary payoff f(-) € [0, 1].
Next likewise, define T°{g}(7) as
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In words, T{g}(7) is the value of a bond given a commitment type government where upon a
type switch, the owner receives an arbitrary payoff g(-) € [0, 1].

Finally, let T{f}(7) = T°{T°{f}}(r). Here, T is the value of a bond given a commitment type
government where upon two type switches (from commitment to opportunistic and back again),
the owner receives an arbitrary payoft f(-) € [0,1].

We now proceed to showing that T° and T¢ are each well defined, and that T is a contraction
on the space of bounded continuous functions. First, we can rewrite T° and T° as:

T{gH(e) =g+ 3H(-1) [ Ho(9)g(s)ds
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and where we used integration by parts to rewrite T°.
Plugging the equation for T° back into T¢ we obtain that ¢¢ is a fixed point of the operator, T,
now written as:

T{f}(r) = go(7) + deHy(~1) / /0 g1(s, §)dsds
where g1(s,5) = Hy(s)H(5)(1 — Fs(s +5)) f(s +3)

and where

9o(7) :g+56H0(—r)/w/Ow/OsHo(s)e_eg(l — Fy(s + $))dH; (3)d5ds

We now argue that for any bounded non-negative continuous function f : Ry — R,, the
(o) (] ~ ~ . . .
iterated integral, fo /0 g1(s, S)dsds, exists. We show this in three steps.

(a) Given that f is continuous, it follows that the function g; is measurable in R%, given our

assumption that F;(s + §) is measurable, together with Hy, H; and f continuous (g; is the
product of measurable functions, and thus it is itself measurable).

(b) The integral /000 g1(s,5)ds exists given s € Ry. f non-negative and bounded implies that
there exists a M > 0 such that 0 < f < M. In addition, that Fs(s + §) € [0,1] implies
0 < gi1(s,8) < Ho(s)H2(S)M = g(s,$). Given s € R, the function §(s, -) is integrable in R,
and it thus follows that g; (s, -) is bounded by two integrable functions, and thus it is also
integrable.

(c) From the previous step, 0 < /OOO g1(s,5)dsds < fom Hy(s)H,(S)Mds. That is, the function
go(s) = fooo g1(s,5)ds is bounded between 0 and fom g(s,5)ds = g(s). Given that ¢(s) is
integrable in R,, it provides an integrable upperbound, and it follows that the iterated
integral, /000 fom g1(s, $)dsds, exists.

A similar argument shows that the iterated integral in the definition of go(7) exists.
Let B denote the space of continuous functions f : Ry — [g, 1] with the sup norm. Note that
this is a complete metric space. We make the following two observations about the operator T:

1) T maps B into itself.

We have already shown that for any bounded non-negative and continous f, T{f}(r) exists.



Note also that T{f}(r) > g > 0 and
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where the inequality follows from using that 0 < f < 1and 0 < F; < 1. So T{f} : Ry —
[g,1].

The continuity of T{f} follows from the fact that go(7) is continuous (as it is the sum a con-

stant and the product of two continuous functions) together with the fact that fT * fom g1(s,5)dsds

is an absolutely continuous function of .

2) T is a contraction mapping.

Consider two functions f and g. Then we have that
T{f}(r) - T{g}()
= 56/ / Hy(s — 7)Hz(S)(1 — Fs(s +8))(f(s +5) — g(s + 5))dsds
T 0
Using that F;(s +5) € [0, 1] we get

IT{f}(2) = T{g}(7)| < |f—9|€5/ /0 Hy(s — 1)H($)dsds
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Thus T is a contraction mapping with modulus 7— X 7= < 1.

It follows by the contraction mapping theorem that there exists a unique bounded and con-
tinuous function ¢° such that T{q‘} = ¢ and where ¢°(7) € [g, 1] for all > 0.

Given the existence and uniqueness of a continuous function g, we can substitute back in the
q° equation and obtain the existence and uniqueness of ¢°. It is straightforward to show that
q°(s) € [0,1] for all s.

B Continuity of ¢° given construction requirement (16)

We have already shown above that ¢¢ is continuous in any equilibrium. The continuity of ¢°
cannot be guaranteed in the same fashion (that is, independently of {F.}). However, we can
show that for any family {F;} that satisfies our construction requirement in (16), ¢° must be
continuous.



From the proof in Appendix A, recall that ¢° can be written as:
00 S 00
q°(s) = e/ / (1 = Fs(s+5))e “dH;(5)ds + e/ Hy(5)q°(s +5)(1 — Fs(s +3))ds
o Jo 0

where H(s) = (1 —~ e_(i”)s), and Hy(s) = e~ (i+4+6)s,

For a family {F;} that satisfies our construction requirement in (16), the above implies that
qo(s) =0foralls > T,as F;(s+35) =1foralls > T and § > 0.

For all s < T, we have then that

q°(s) :e/T/s(l—FS(§))e_e(§_S)dH1(§—s)d§+e/TH2(§—s)qc(§)(1—Fs(§))d§

which implies that the limgy7 ¢°(s) = 0. Thus ¢° is continuous at T.
x(s)
1-p(s)°

Finally, using condition (16), and letting x(s) = we have that fors < T,

T § § 4 : T 5 4
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which guarantees that ¢° is a continuous function of s for s € [0, T).
Hence, we have shown that the function ¢°(s) associated with a family of default distributions
that satisfy (16) must be continuous for all s > 0.

C H given by (17) satisfies Assumption 1

We now show that H in equation (17) satisfies the conditions in Assumption 1 given our param-
eters.

For part(i): Lipschitz continuity. Consider two points xo = (b, qo) and x; = (b1, ¢q1) in X.
Let Hy = H(bo, qo) and Hy = H(by,q1). Let# =r+Aand i = i + A. Let [a]* = max{a, 0}, and for
our parameters, r > i. Then,

|Ho — Hy| = |[F = i/g0)* (y — bo) = [F = i/q1]" (y — b))
= |([F = i/qo]* = [F = i/q1]%) (y = bo) + [F = i/q1]* (b1 — bo)|
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—Iq0 — qil + |7 = i| X |bg — by| < max{rz/z,r*—z}x (Ig0 — g1l + |bo — b1])
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V2 max{#/i,r* — i}|xo — x1

where the first inequality follows from the facts that (i) #2/i is the highest (absolute value) slope
of the function g(q) = [¥ — i/q]* given ¥ > i and (ii) [F — i/q]* < 7 — i as ¢ < 1. The second
inequality follows from a + b < V2+/a? + b?) fora > 0,b > 0. Thus M = \/Emax{fz/f, r* —i}is
the Lipschitz constant for all all xp, x; € X.



Parts (ii) and (iii): These are immediate.

Parts (iv): In this case, g = 22 as H(0,q) = 0 for all ¢ < g and H(0,q) > 0 for all ¢ > g. Now

r+A°’

note that for our parameter values ¢ = 0.6 < ﬂg — = 0.875.

Part (v): H(B,1) = 0 given that B = y.

Part (vi): H > 0 requires q € (g, 1] and b € [0,y). In this case, H(b,q) = (r* +A- %) (y-10)
which is differentiable in this domain.



