Online Appendix to "Reputation and Sovereign Default"

By Manuel Amador and Christopher Phelan

A Existence and uniqueness of a q^o and a continuous q^c

Here we show that given $\{F_{\tau}\}_{\tau=0}^{\infty}$, there exists a unique q^{o} and a unique continuous q^{c} that satisfy the integral equations described in the main body of the paper.

Instead of working with vector-valued operators, the idea of the proof is to substitute the equation for q^o into q^c . Then, to prove the existence, uniqueness and continuity of q^c , we construct a contraction *T* mapping the space of bounded, continuous functions to itself and where q^c is a fixed point of this mapping.

First, define $T^o{f}(\tau)$ as

$$T^{o}{f}(\tau) = \int_{0}^{\infty} \left[\left(\int_{0}^{s} (i+\lambda)e^{-(i+\lambda)\tilde{s}} d\tilde{s} + e^{-(i+\lambda)s} f(\tau+s) \right) (1 - F_{\tau}(\tau+s)) + \int_{0}^{s} \left(\int_{0}^{\tilde{s}} (i+\lambda)e^{-(i+\lambda)\Delta} d\Delta \right) dF_{\tau}(\tau+\tilde{s}) \right] \epsilon e^{-\epsilon s} ds.$$
(1)

In words, $T^o{f}(\tau)$ is the value of a bond given an opportunistic government where upon a type switch, the owner receives an arbitrary payoff $f(\cdot) \in [0, 1]$.

Next likewise, define $T^{c}{g}(\tau)$ as

$$T^{c}\{g\}(\tau) = \frac{i+\lambda}{i+\lambda+\delta} + \int_{0}^{\infty} e^{-(i+\lambda+\delta)s} g(\tau+s)\delta ds.$$
⁽²⁾

In words, $T^{c}{g}(\tau)$ is the value of a bond given a commitment type government where upon a type switch, the owner receives an arbitrary payoff $g(\cdot) \in [0, 1]$.

Finally, let $T{f}(\tau) \equiv T^c{T^o{f}}(\tau)$. Here, *T* is the value of a bond given a commitment type government where upon two type switches (from commitment to opportunistic and back again), the owner receives an arbitrary payoff $f(\cdot) \in [0, 1]$.

We now proceed to showing that T^o and T^c are each well defined, and that T is a contraction on the space of bounded continuous functions. First, we can rewrite T^c and T^o as:

$$T^{c}{g}(\tau) = \underline{q} + \delta H_{0}(-\tau) \int_{\tau}^{\infty} H_{0}(s)g(s)ds$$
$$T^{o}{f}(s) = \epsilon \int_{0}^{\infty} \int_{0}^{\tilde{s}} (1 - F_{s}(s+\hat{s}))e^{-\epsilon\tilde{s}}dH_{1}(\hat{s})d\tilde{s} + \epsilon \int_{0}^{\infty} H_{2}(\tilde{s})f(s+\tilde{s})(1 - F_{s}(s+\tilde{s}))d\tilde{s}$$

where

$$\underline{q} = \frac{i+\lambda}{i+\lambda+\delta}, H_0(s) = e^{-(i+\lambda+\delta)s}, H_1(s) = \left(1 - e^{-(i+\lambda)s}\right), H_2(s) = e^{-(i+\lambda+\epsilon)s}$$

and where we used integration by parts to rewrite T^{o} .

Plugging the equation for T^o back into T^c we obtain that q^c is a fixed point of the operator, T, now written as:

$$T\{f\}(\tau) = g_0(\tau) + \delta \epsilon H_0(-\tau) \int_{\tau}^{\infty} \int_{0}^{\infty} g_1(s,\tilde{s}) d\tilde{s} ds$$

where $g_1(s,\tilde{s}) = H_0(s) H_2(\tilde{s}) (1 - F_s(s+\tilde{s})) f(s+\tilde{s})$

and where

$$g_0(\tau) = \underline{q} + \delta \epsilon H_0(-\tau) \int_{\tau}^{\infty} \int_0^{\infty} \int_0^{\tilde{s}} H_0(s) e^{-\epsilon \tilde{s}} (1 - F_s(s+\hat{s})) dH_1(\hat{s}) d\tilde{s} ds$$

We now argue that for any bounded non-negative continuous function $f : \mathbb{R}_+ \to \mathbb{R}_+$, the iterated integral, $\int_0^\infty \int_0^\infty g_1(s, \tilde{s}) d\tilde{s} ds$, exists. We show this in three steps.

- (a) Given that f is continuous, it follows that the function g_1 is measurable in \mathbb{R}^2_+ , given our assumption that $F_s(s + \tilde{s})$ is measurable, together with H_0 , H_2 and f continuous (g_1 is the product of measurable functions, and thus it is itself measurable).
- (b) The integral $\int_0^{\infty} g_1(s, \tilde{s}) d\tilde{s}$ exists given $s \in \mathbb{R}_+$. f non-negative and bounded implies that there exists a M > 0 such that $0 \le f \le M$. In addition, that $F_s(s + \tilde{s}) \in [0, 1]$ implies $0 \le g_1(s, \tilde{s}) \le H_0(s)H_2(\tilde{s})M \equiv \bar{g}(s, \tilde{s})$. Given $s \in \mathbb{R}_+$, the function $\bar{g}(s, \cdot)$ is integrable in \mathbb{R}_+ , and it thus follows that $g_1(s, \cdot)$ is bounded by two integrable functions, and thus it is also integrable.
- (c) From the previous step, $0 \leq \int_0^\infty g_1(s,\tilde{s})d\tilde{s}ds \leq \int_0^\infty H_0(s)H_2(\tilde{s})Md\tilde{s}$. That is, the function $g_2(s) = \int_0^\infty g_1(s,\tilde{s})d\tilde{s}$ is bounded between 0 and $\int_0^\infty \bar{g}(s,\tilde{s})d\tilde{s} = \hat{g}(s)$. Given that $\hat{g}(s)$ is integrable in \mathbb{R}_+ , it provides an integrable upperbound, and it follows that the iterated integral, $\int_0^\infty \int_0^\infty g_1(s,\tilde{s})d\tilde{s}ds$, exists.

A similar argument shows that the iterated integral in the definition of $g_0(\tau)$ exists.

Let *B* denote the space of continuous functions $f : \mathbb{R}_+ \to [\underline{q}, 1]$ with the sup norm. Note that this is a complete metric space. We make the following two observations about the operator *T*:

1) *T* maps *B* into itself.

We have already shown that for any bounded non-negative and continous $f, T{f}(\tau)$ exists.

Note also that $T{f}(\tau) \ge q \ge 0$ and

$$T\{f\}(\tau) \leq \underline{q} + \delta \epsilon \left[\int_{\tau}^{\infty} \int_{0}^{\infty} \int_{0}^{\tilde{s}} H_{0}(s-\tau) e^{-\epsilon \tilde{s}} dH_{1}(\hat{s}) d\tilde{s} ds + \int_{\tau}^{\infty} \int_{0}^{\infty} H_{0}(s-\tau) H_{2}(\tilde{s}) d\tilde{s} ds \right] = 1$$

where the inequality follows from using that $0 \le f \le 1$ and $0 \le F_s \le 1$. So $T\{f\} : \mathbb{R}_+ \to [q, 1]$.

The continuity of $T\{f\}$ follows from the fact that $g_0(\tau)$ is continuous (as it is the sum a constant and the product of two continuous functions) together with the fact that $\int_{\tau}^{\infty} \int_{0}^{\infty} g_1(s, \tilde{s}) d\tilde{s} ds$ is an absolutely continuous function of τ .

2) *T* is a contraction mapping.

Consider two functions f and g. Then we have that

$$T\{f\}(\tau) - T\{g\}(\tau)$$

= $\delta \epsilon \int_{\tau}^{\infty} \int_{0}^{\infty} H_0(s-\tau) H_2(\tilde{s})(1-F_s(s+\tilde{s}))(f(s+\tilde{s})-g(s+\tilde{s})) d\tilde{s} ds$

Using that $F_s(s + \tilde{s}) \in [0, 1]$ we get

$$\begin{split} |T\{f\}(\tau) - T\{g\}(\tau)| &\leq |f - g|\epsilon\delta \int_{\tau}^{\infty} \int_{0}^{\infty} H_{0}(s - \tau)H_{2}(\tilde{s})d\tilde{s}ds \\ &= \frac{\epsilon\delta}{(i + \lambda + \epsilon)(i + \lambda + \delta)}|f - g| \end{split}$$

Thus *T* is a contraction mapping with modulus $\frac{\epsilon}{i+\lambda+\epsilon} \times \frac{\delta}{i+\lambda+\delta} < 1$.

It follows by the contraction mapping theorem that there exists a unique bounded and continuous function q^c such that $T\{q^c\} = q^c$ and where $q^c(\tau) \in [q, 1]$ for all $\tau \ge 0$.

Given the existence and uniqueness of a continuous function q_c we can substitute back in the q^o equation and obtain the existence and uniqueness of q^o . It is straightforward to show that $q^o(s) \in [0, 1]$ for all s.

B Continuity of q^o given construction requirement (16)

We have already shown above that q^c is continuous in any equilibrium. The continuity of q^o cannot be guaranteed in the same fashion (that is, independently of $\{F_{\tau}\}$). However, we can show that for any family $\{F_{\tau}\}$ that satisfies our construction requirement in (16), q^o must be continuous.

From the proof in Appendix A, recall that q^o can be written as:

$$q^{o}(s) = \epsilon \int_{0}^{\infty} \int_{0}^{\tilde{s}} (1 - F_{s}(s+\hat{s}))e^{-\epsilon\tilde{s}}dH_{1}(\hat{s})d\tilde{s} + \epsilon \int_{0}^{\infty} H_{2}(\tilde{s})q^{c}(s+\tilde{s})(1 - F_{s}(s+\tilde{s}))d\tilde{s}$$

where $H_1(s) = (1 - e^{-(i+\lambda)s})$, and $H_2(s) = e^{-(i+\lambda+\epsilon)s}$.

For a family $\{F_{\tau}\}$ that satisfies our construction requirement in (16), the above implies that $q_o(s) = 0$ for all $s \ge T$, as $F_s(s + \hat{s}) = 1$ for all $s \ge T$ and $\hat{s} \ge 0$.

For all $s \leq T$, we have then that

$$q^{o}(s) = \epsilon \int_{s}^{T} \int_{s}^{\tilde{s}} (1 - F_{s}(\tilde{s})) e^{-\epsilon(\tilde{s}-s)} dH_{1}(\hat{s}-s) d\tilde{s} + \epsilon \int_{s}^{T} H_{2}(\tilde{s}-s) q^{c}(\tilde{s}) (1 - F_{s}(\tilde{s})) d\tilde{s}$$

which implies that the $\lim_{s\uparrow T} q^o(s) = 0$. Thus q^o is continuous at *T*.

Finally, using condition (16), and letting $\hat{x}(s) = \frac{x(s)}{1-\rho(s)}$, we have that for s < T,

$$q^{o}(s) = \epsilon \int_{s}^{T} \int_{s}^{\tilde{s}} e^{-\int_{s}^{\tilde{s}} \hat{x}(\tau)d\tau} e^{-\epsilon(\tilde{s}-s)} dH_{1}(\hat{s}-s)d\tilde{s} + \epsilon \int_{s}^{T} H_{2}(\tilde{s}-s)q^{c}(\tilde{s})e^{-\int_{s}^{\tilde{s}} \hat{x}(\tau)d\tau}d\tilde{s}$$

which guarantees that q^o is a continuous function of *s* for $s \in [0, T)$.

Hence, we have shown that the function $q^o(s)$ associated with a family of default distributions that satisfy (16) must be continuous for all $s \ge 0$.

C H given by (17) satisfies Assumption 1

We now show that H in equation (17) satisfies the conditions in Assumption 1 given our parameters.

For part(i): Lipschitz continuity. Consider two points $x_0 = (b_0, q_0)$ and $x_1 = (b_1, q_1)$ in \mathbb{X} . Let $H_0 = H(b_0, q_0)$ and $H_1 = H(b_1, q_1)$. Let $\tilde{r} = r + \lambda$ and $\tilde{i} = i + \lambda$. Let $[a]^+ = \max\{a, 0\}$, and for our parameters, $\tilde{r} > \tilde{i}$. Then,

$$\begin{aligned} |H_0 - H_1| &= \left| [\tilde{r} - \tilde{i}/q_0]^+ (y - b_0) - [\tilde{r} - \tilde{i}/q_1]^+ (y - b_1) \right| \\ &= \left| \left([\tilde{r} - \tilde{i}/q_0]^+ - [\tilde{r} - \tilde{i}/q_1]^+ \right) (y - b_0) + [\tilde{r} - \tilde{i}/q_1]^+ (b_1 - b_0) \right| \\ &\leq \frac{\tilde{r}^2}{\tilde{i}} |q_0 - q_1| + |\tilde{r} - i| \times |b_0 - b_1| \leq \max\{\tilde{r}^2/\tilde{i}, r^\star - i\} \times (|q_0 - q_1| + |b_0 - b_1|) \\ &\leq \sqrt{2} \max\{\tilde{r}^2/\tilde{i}, r^\star - i\} |x_0 - x_1| \end{aligned}$$

where the first inequality follows from the facts that (i) \tilde{r}^2/\tilde{i} is the highest (absolute value) slope of the function $g(q) = [\tilde{r} - \tilde{i}/q]^+$ given $\tilde{r} > \tilde{i}$ and (ii) $[\tilde{r} - \tilde{i}/q]^+ \le \tilde{r} - \tilde{i}$ as $q \le 1$. The second inequality follows from $a + b \le \sqrt{2}\sqrt{a^2 + b^2}$ for $a \ge 0, b \ge 0$. Thus $M \equiv \sqrt{2}\max\{\tilde{r}^2/\tilde{i}, r^* - i\}$ is the Lipschitz constant for all all $x_0, x_1 \in \mathbb{X}$. Parts (ii) and (iii): These are immediate.

Parts (iv): In this case, $\underline{q} = \frac{i+\lambda}{r+\lambda}$, as H(0,q) = 0 for all $q \leq \underline{q}$ and H(0,q) > 0 for all $q > \underline{q}$. Now note that for our parameter values $\underline{q} = 0.6 < \frac{i+\lambda}{i+\lambda+\delta+\epsilon} = 0.875$.

Part (v): $H(\overline{B}, 1) = 0$ given that $\overline{B} = y$.

Part (vi): H > 0 requires $q \in (\underline{q}, 1]$ and $b \in [0, y)$. In this case, $H(b, q) = \left(r^{\star} + \lambda - \frac{i+\lambda}{q}\right)(y - b)$ which is differentiable in this domain.