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Regulating a monopolist with uncertain costs without transfers
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We analyze the Baron and Myerson (1982) model of regulation under the restric-
tion that transfers are infeasible. Extending techniques from the delegation litera-
ture to incorporate an ex post participation constraint, we report sufficient condi-
tions under which optimal regulation takes the form of price-cap regulation. We
establish conditions under which the optimal price cap is set at a level such that
no types are excluded and show that exclusion of higher cost types can be optimal
when these conditions fail. We also provide conditions for the optimality of price-
cap regulation when an ex post participation constraint is present and exclusion
is infeasible.
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1. Introduction

The optimal regulatory policy for a monopolist is influenced by many considerations,
including the possibility of private information, the objective of the regulator, and the
feasibility and efficiency of transfers. Armstrong and Sappington (2007) survey the na-
ture of optimal regulation in different settings and discuss as well the design of practical
policies, such as price-cap regulation, that are frequently observed in practice. As they
emphasize, an important question is whether practical policies perform well in realis-
tic settings where private information may be present and transfer instruments may be
limited.

In a seminal paper, Baron and Myerson (1982) consider the optimal regulation of
a single-product monopolist with private information about its costs of production.
In their model, a regulatory policy indicates, for every possible cost type, whether the
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1720 Amador and Bagwell Theoretical Economics 17 (2022)

monopoly is allowed to produce at all and, if so, the output and corresponding price
that it selects and the transfer from consumers that it receives (where a negative trans-
fer is a tax). A regulatory policy is feasible if it is incentive compatible and satisfies an
ex post participation constraint. The regulator chooses over feasible regulatory policies
to maximize a weighted social welfare function that weighs consumer surplus no less
heavily than producer surplus.1

In a standard version of the Baron–Myerson model, the monopolist faces a com-
monly known and nonnegative fixed cost and is privately informed as to the level of its
constant marginal cost, where the marginal cost has a continuum of possible types and
is drawn from a commonly known distribution function. If the regulator gives greater
welfare weight to consumer surplus, then the optimal regulatory policy defines a non-
decreasing price schedule for active types with a positive mark up for all but the lowest
cost type. Production is permitted only for types such that consumer surplus under the
optimal pricing rule weakly exceeds the fixed cost of production.

In this paper, we characterize optimal regulatory policy in the Baron–Myerson model
with constant marginal costs when transfers are infeasible. Our no-transfers assumption
contrasts sharply with Baron and Myerson’s assumption that all (positive and negative)
transfers are available. We motivate our no-transfers assumption in three ways. First,
regulators often do not have the authority to explicitly tax or pay subsidies.2 Second,
while transfers from consumers to firms may also be achieved via access fees in two-part
tariff schemes, the scope for such transfers may be limited in practice, particularly when
universal service is sought for heterogeneous consumers.3 Finally, in other settings, the
scope for a positive access fee may be limited by the possibility of consumer arbitrage,
while the scope for a negative access fee may be limited by the prospect of strategic con-
sumer behavior designed to capture “sign-up” bonuses. In view of these considerations,
we remove the traditional assumption that all transfers are available and consider the
opposite case in which all transfers are infeasible. Specifically, we assume that the regu-
lated firm is restricted to a uniform price (i.e., linear pricing).4 As our main finding, we
report sufficient conditions under which price-cap regulation emerges as the optimal
regulatory policy.

As mentioned above, price-cap regulation is a common form of regulation. The ap-
peal of price-cap regulation is often associated with the incentive that it gives to the
regulated firm to invest in endogenous cost reduction.5 By contrast, we establish condi-
tions for the optimality of price-cap regulation in a model in which costs are private and

1An alternative approach is developed by Laffont and Tirole (1993, 1986). They assume that the regulator
maximizes aggregate social surplus and that transfers entail a social cost of funds.

2For further discussion, see, for example, Armstrong and Sappington (2007, p. 1607), Baron (1989,
p. 1351), Church and Ware (2000, p. 840), Joskow and Schmalensee (1986, p. 5), Laffont and Tirole (1993,
p. 130), and Schmalensee (1989, p. 418).

3As Laffont and Tirole (1993, p. 151) explain, “optimal linear pricing is a good approximation to optimal
two-part pricing when there is concern that a nonnegligible fixed premium would exclude either too many
customers or customers with low incomes whose welfare is given substantial weight in the social welfare
function.”

4In this respect, we follow the lead of Schmalensee (1989). Schmalensee (1989, p. 418) provides addi-
tional motivation for the practical relevance of linear pricing schemes in regulatory settings.

5See, for example, Armstrong and Sappington (2007, p. 1608) and the references cited therein.
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1721

exogenous. Our no-transfers assumption is critical: price-cap regulation is not optimal
in the standard Baron–Myerson model with transfers. Our finding thus indicates that
this practical regulatory policy may perform not just well but optimally when a regulator
faces a privately informed monopolist and transfers are infeasible.

To develop this finding, we consider a “regulator’s problem” in which the regulator
chooses a menu of permissible outputs, with the understanding that the output choice
intended for a monopolist with a given cost type must be the best choice for the mo-
nopolist relative to all other permitted output choices. In addition to this incentive
compatibility constraint, the regulator faces an ex post participation, or individual ra-
tionality (IR), constraint: if the regulator seeks a positive output from a monopolist with
a given cost type, then the monopolist must earn more by producing this output than
by shutting down and avoiding the nonnegative fixed cost of production. Importantly,
the regulator may choose a menu of permissible outputs such that, for some cost types,
the monopolist elects to produce zero output and thus earn a profit of zero. As in the
original Baron–Myerson model, the regulator may thus design the regulatory policy so
as to “exclude” some cost types from production.

The IR constraint plays an important role in our analysis. If we were to ignore this
constraint, then the regulator’s problem would take the form of a traditional delegation
problem and fit into the framework of Amador and Bagwell (2013). We could then use
the sufficiency theorems developed in that paper and provide conditions under which
a simple price cap (i.e., a quantity floor) is optimal. We show, however, that the IR con-
straint in fact would be violated for higher cost types when this simple price cap is used.

We consider instead a price-cap allocation where the cap is placed at a price level
such that a threshold cost type earns zero profit and is thus indifferent to shut down.
No exclusion occurs if the threshold cost type corresponds to the highest cost type in
the full support, while exclusion occurs when the threshold cost type falls below the
highest possible cost type. Within the set of nonexcluded cost types, higher cost types
pool at the price cap, whereas lower cost types may select their monopoly prices. It is
also possible that the price cap falls below the monopoly price for the lowest possible
cost type, in which case all nonexcluded cost types pool at the price cap. The central
task of our analysis is to identify sufficient conditions under which the described price
cap with possible exclusion is optimal. We also seek to determine sufficient conditions
that indicate when actual exclusion does or does not occur.

To establish our results, we proceed in three main steps. First, we consider the “regu-
lator’s truncated problem,” wherein the regulator allocates production for cost types up
to an exogenous upper-bound cost type and is not allowed to exclude any types in this
truncated set. The upper-bound cost type can be fixed at any value that is above the low-
est possible cost type and at or below the highest possible cost type in the full support.
We then obtain sufficient conditions under which the optimal allocation for the regula-
tor’s truncated problem is a price cap set at a level such that the upper-bound cost type
earns zero profit and is thus indifferent between producing or not. Second, we argue
that this truncated allocation remains feasible when extended to the full support of pos-
sible costs if cost types above the upper-bound cost type are excluded (assigned zero
output). Finally, we characterize the optimal level of exclusion. This exercise amounts
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1722 Amador and Bagwell Theoretical Economics 17 (2022)

to a single variable optimization problem defined over the upper bound, or threshold,
cost type.

Our first proposition establishes a general set of sufficient conditions under which
the described price-cap allocation solves the regulator’s truncated problem. We then
provide a second proposition, which establishes that, if the sufficient conditions for our
first proposition hold for any upper-bound cost type, then a price-cap allocation with
potential exclusion is optimal within the set of all feasible allocations for the regula-
tor’s problem. A key ingredient in making this argument is that the optimal price-cap
allocation is such that the threshold cost type is indifferent to shut down.

We also provide several results that facilitate the application of our propositions.
Three approaches are developed. First, we show that our sufficient conditions hold if
the density is nondecreasing over the full support and if a “relative concavity” condition
holds that concerns the relative curvature of the consumer surplus and profit functions,
with each expressed as a function of quantity. The relative concavity condition is more
likely to hold when the ratio of the concavity of the consumer surplus function to that
of the profit function is higher. Second, we identify a family of demand functions under
which the sufficient conditions for our propositions hold if a simple inequality is sat-
isfied. The inequality condition holds when the density is nondecreasing over the full
support, but it can hold as well when the density is decreasing over part or all of the full
support. To illustrate the power of this approach, we show that the family includes lin-
ear demand, constant elasticity demand, and log demand functions, and we derive and
interpret the corresponding inequality condition for each of these examples. The third
approach is to check the sufficient conditions for our propositions directly. We illustrate
this approach for an example with an exponential demand function.

Finally, we identify conditions under which actual exclusion does or does not occur,
respectively. Our third proposition establishes that no exclusion is optimal under a gen-
eral set of conditions; specifically, if the density is nondecreasing over the full support
and the consumer surplus function is weakly concave, and if the sufficient conditions
for our first proposition hold for any upper-bound cost type, then the optimal regula-
tory policy entails no exclusion and a price cap set at a price level such that the IR con-
straint for the highest cost type is binding. Thus, optimal regulation then takes the form
of a standard second-best price cap that delivers zero profit for the highest cost type.
We note that the consumer surplus function is weakly concave in quantity for the log
demand and constant elasticity demand examples.

We also analyze the linear demand example. The consumer surplus function asso-
ciated with this demand function is strictly convex, and so our third proposition cannot
be applied. In our fourth and final proposition, we show that, if the distribution of cost
types is uniform, the social planner maximizes aggregate social welfare, and the fixed
cost of entry is strictly positive, then (a) the price cap is below the monopoly price of the
lowest cost type, and thus induces pooling among all non-excluded types, and (b) some
higher cost types must be excluded, provided that not all types would pool at the cap
were no exclusion to occur (i.e., provided that the sub-monopoly price that generates
zero profit for the highest possible cost type is above the monopoly price of the lowest
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1723

possible cost type). This proposition demonstrates that exclusion of higher cost types
can be optimal in some settings.6, 7

The described results characterize optimal regulatory policy for market settings in
which exclusion for some cost types is feasible. Our results thus directly apply when the
monopolist provides an inessential service for a given market or region. Since Baron and
Myerson (1982) also focus on settings where exclusion is feasible, our findings charac-
terize how their analysis extends when transfers are infeasible.

We are also interested in the “no-exclusion” scenario, wherein the regulator must
ensure that the monopolist earns nonnegative profit while providing positive output
under all cost realizations. This scenario may be relevant for a monopolist that provides
essential services with poor substitution alternatives. To characterize the optimal reg-
ulatory policy for this scenario, we refer to our first proposition for the special case in
which the upper-bound cost type equals the highest cost type in the full support. Our
first proposition then provides conditions under which optimal regulation for the no-
exclusion scenario takes the form of a price-cap policy, where the price cap is set at the
second-best level that generates zero profit for a monopolist with the highest possible
cost type. Likewise, we can facilitate the application of our results to this scenario by
using the three approaches described above.

Our work is related to research on optimal delegation. The delegation literature be-
gins with Holmstrom (1977), who considers a setting in which a principal faces a pri-
vately informed and biased agent and in which contingent transfers are infeasible. The
principal then selects a set of permissible actions from the real line, and the agent selects
his preferred action from that set after privately observing the state of nature.8 A key goal
in this literature has been to identify general conditions under which the principal opti-
mally defines the permissible set as an interval. Alonso and Matouschek (2008) consider
a setting with quadratic utility functions and provide necessary and sufficient conditions
for interval delegation to be optimal. Extending the Lagrangian techniques of Amador,
Werning, and Angeletos (2006), Amador and Bagwell (2013) consider a general repre-
sentation of the delegation problem and establish necessary and sufficient conditions
for the optimality of interval delegation.9

Our analysis of the regulator’s truncated problem builds on the Lagrangian methods
used by Amador and Bagwell (2013), but a novel feature of the current paper is that the

6See Armstrong (1996) for an analysis of optimal exclusion in the different context of a model of multi-
product nonlinear pricing when the type space is multidimensional.

7The setting of linear demand and a uniform distribution is often treated in the literature. Alonso and
Matouschek (2008) and Baron and Myerson (1982) illustrate their findings using this example.

8A large literature follows Holmstrom’s work. See, for example, Amador and Bagwell (2012), Amador and
Bagwell (2020), Amador, Bagwell, and Frankel (2018), Amador, Werning, and Angeletos (2006), Ambrus and
Egorov (2017), Armstrong and Vickers (2010), Burkett (2016), Frankel (2014), Frankel (2016), Guo (2016),
Koessler and Martimort (2012), Martimort and Semenov (2006), Melumad and Shibano (1991), and Mylo-
vanov (2008). Related themes also arise in repeated games with private information; see Athey, Bagwell,
and Sanchirico (2004), Athey, Atkeson, and Kehoe (2005), and Halac and Yared (2019).

9We note that a cap can be understood as a form of interval delegation, in which the maximum (mini-
mum) action is defined by the cap (the lowest “flexible” choice for any agent type).
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1724 Amador and Bagwell Theoretical Economics 17 (2022)

analysis is extended to include an ex post participation constraint.10 A further distinc-
tion of the current paper is that, in our analysis of the regulator’s problem, we allow for
the possibility of excluded types and show further that actual exclusion can be optimal.
In that case, the regulation contract can be understood as providing a disconnected set
of quantities, namely, a quantity of zero for excluded types combined with an interval
of positive quantities for nonexcluded types. The optimal regulation contract is then
clearly distinct from an interval allocation.

Alonso and Matouschek (2008) were the first to argue that the monopoly regulation
problem can be understood as a delegation problem. As an application of their analysis,
they study optimal regulation when costs are privately observed by the regulated firm
and transfers are infeasible, and they report conditions under which price-cap regula-
tion is optimal. Our analysis differs in two ways. First, Alonso and Matouschek assume
that the monopolist produces regardless of its cost type and do not include a participa-
tion constraint. Indeed, their price-cap solution would violate an ex post participation
constraint. We include an ex post participation constraint, allow for exclusion, and con-
sider as well the setting in which the ex post participation constraint holds but exclusion
is infeasible. When exclusion is not optimal or is infeasible, the optimal price cap in our
model is placed at a higher level than in their analysis. Second, Alonso and Matouschek
assume that demand is linear and the regulator maximizes aggregate social surplus. We
consider a more general family of demand functions and regulator objectives, and we
provide conditions under which exclusion is optimal when demand is linear.

Recent work by Kolotilin and Zapechelnyuk (2019) is also related. They examine op-
timal delegation in a “linear delegation” framework and, as an application, provide con-
ditions under which a price cap is the optimal regulatory policy in a delegation setting
with a participation constraint. The two papers are complementary. We highlight three
distinct features of our analysis. First, following Baron and Myerson (1982), we assume
that the monopolist has a nonnegative fixed cost; by contrast, Kolotilin and Zapechel-
nyuk (2019) build from the assumption that the monopolist has no fixed costs. Second,
the linear delegation framework corresponds in the regulation setting to the family of
demand functions that we identify under which the sufficient conditions for our propo-
sitions hold if a simple inequality is satisfied; however, as noted above, we can go beyond
this family and check the sufficient conditions for our propositions directly, as we do for
the exponential demand function. Third, the two papers employ different proof meth-
ods: we analyze the delegation problem directly using a Lagrangian approach, whereas
Kolotilin and Zapechelnyuk (2019) analyze the delegation problem by drawing a novel
link to the literature on Bayesian persuasion.

Additional work in this area has explored alternative delegation environments where
similar ex post participation constraints naturally arise. See, for example, Kartik, Kleiner,

10Amador and Bagwell (2020) also build on the Lagrangian methods used by Amador and Bagwell (2013).
Amador and Bagwell (2020) provide sufficient conditions under which money burning expenditures are
used in an optimal delegation contract. Building on work by Ambrus and Egorov (2017), they also consider
an application with an ex ante participation constraint under the assumption that ex ante (noncontingent)
transfers are feasible. The participation constraint can then be addressed using standard methods. In the
present paper, by contrast, the participation constraint must hold ex post and cannot be addressed using
standard methods since transfers are infeasible.
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1725

and Van Weelden (2021), Saran (2021), and Zapechelnyuk (2020), who consider applica-
tions to veto bargaining, monopolistic screening, and quality certification, respectively.
Methodologically, one key difference is that the main results in these papers are ob-
tained for a payoff specification for the principal that is independent of the private in-
formation parameter. This restriction is not appropriate for our regulation application,
where the regulator’s payoff function directly depends on the regulated firm’s cost level,
and as a consequence, we do not impose this restriction in our analysis.

The paper is organized as follows. Section 2 sets up the regulator’s problem, and
Section 3 examines cap allocations. Section 4 then focuses on the regulator’s truncated
problem and develops general sufficient conditions for the optimality of a cap alloca-
tion. Section 5 considers the global optimality of the cap allocation and develops further
results and approaches that facilitate the application of our findings. Section 6 identifies
conditions under which actual exclusion does or does not occur. Section 7 concludes.
The Appendix contains the remaining proofs.

2. The regulator’s problem

In this section, we present our basic model and formally define the problem that con-
fronts the regulator. We also identify the bias in the monopolist’s unrestricted output
choice.

We consider a monopolist facing an inverse demand function given by P(q) where
q is the quantity produced. The production quantity q resides in the set Q ≡ [0, qmax],
which is an interval of the real line with nonempty interior. The function P(q) is well-
defined and finite for all q ∈ (0, qmax].

We assume the monopolist faces a constant marginal cost of production γ as well as
a fixed cost σ ≥ 0. The marginal cost γ is private information to the monopolist and is
distributed over the support � = [γ, γ] where γ > γ > 0 with a differentiable cumulative
distribution function F(γ). The associated density, f (γ) ≡ F ′(γ), is strictly positive and
differentiable.

We assume that the regulator has no access to transfers or taxes, and can only im-
pose restrictions on the quantity produced by the monopolist. As discussed in the In-
troduction, our no-transfers assumption means that the regulator cannot impose taxes
or subsidies, and it implicitly implies as well that the monopolist cannot use an access
fee. We thus assume that the monopolist selects a uniform price, with the regulator
determining the feasible menu of such prices through the selection of a feasible menu
of quantities. We allow that the regulator’s objective is to maximize a weighted social
welfare function in which profits receive weight α ∈ (0, 1]. The regulator maximizes ag-
gregate social surplus when α = 1 and gives greater weight to consumer interests when
α< 1.

We impose the following assumptions on primitives.

Assumption 1. We impose the following assumptions:

(a) P(q) is twice-continuously differentiable for q ∈ (0, qmax] with P ′(q) < 0 <P(q).
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1726 Amador and Bagwell Theoretical Economics 17 (2022)

(b) limq↓0 P(q) > γ and P(qmax ) < γ.

(c) There exist functions b(q), v(q), and w(γ, q), which are twice-continuously differ-
entiable for q ∈ (0, qmax] and that satisfy

b(q) ≡ P(q)q,

v(q) ≡
∫ q

0
P(z)dz − P(q)q,

w(γ, q) ≡ −γq+ b(q) + 1
α
v(q),

with limq↓0 b(q) = 0 and limq↓0 v(q) = 0. We define b(0) = v(0) =w(γ, 0) = 0.

(d) b′′(q) < 0 and wqq(γ, q) = b′′(q) + 1
αv

′′(q) ≤ 0 for all q ∈ (0, qmax].

(e) wq(γ, qmax ) < 0.

In this assumption, b(q) defines the total revenue for the monopolist, v(q) repre-
sents consumer surplus, and w(γ, q) represents the welfare to the regulator (gross of
the fixed cost).11 Using Assumption 1, we obtain that v′(q) = −qP ′(q) > 0 for all q > 0.
Similarly, using Assumption 1, we have that

wqq(γ, q) = b′′(q) + 1
α
v′′(q)

= P ′′(q)q+ 2P ′(q) − 1
α

[
P ′′(q)q+ P ′(q)

] ≤ 0 for q > 0.

Notice that P ′(q) < 0 implies that w is strictly concave when α = 1. We make no as-
sumption as regards the sign of v′′(q). If marginal revenue is steeper than demand (i.e.,
b′′(q) < P ′(q)), then v′′(q) > 0.12 For example, as we discuss below, v′′(q) > 0 when de-
mand is linear, and v′′(q) < 0 when demand exhibits constant elasticity.

Assumption 1 also includes various regularity conditions. According to part (b), the
inverse demand function exceeds the highest marginal cost for quantities that are suf-
ficiently close to zero and falls below the lowest marginal cost for quantities that are
sufficiently close to qmax. Part (e) ensures that the welfare-maximizing quantity is below
qmax, even when marginal cost is at its lowest possible value.

We envision the regulator as choosing a menu of permissible outputs, with the un-
derstanding that a monopolist with cost type γ selects its preferred output from this
menu. Thus, if the regulator seeks to assign an output q(γ) to a monopolist with type
γ, then an incentive compatibility constraint must be satisfied. As well, if the regulator
seeks a positive output from a monopolist with type γ, then type γ must earn more by
producing q(γ) > 0 than by shutting down and avoiding the fixed cost of production,
σ ≥ 0.13 We allow that the regulator may choose a menu of permissible outputs such

11Our notation here is designed to facilitate easy comparison with Amador and Bagwell (2013).
12This condition holds if the demand function is log concave but fails otherwise.
13We have assumed that the fixed cost σ is independent of γ. We have done so mostly for simplicity, as it

is possible to generalize our main results (i.e., Propositions 1 and 2) to the case where σ(γ) is a nondecreas-
ing and nonnegative function of γ.
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1727

that some types produce zero output, incur no fixed cost, and thus earn a profit of zero.
That is, the regulator may “exclude” some types from production.

The regulator’s problem can then be written as follows:

(P1) max
q:�→Q

∫
�

(
w

(
γ, q(γ)

) − 1
(
q(γ)

)
σ

)
dF(γ) subject to:

γ ∈ arg max
γ̃∈�

−γq(γ̃) + b
(
q(γ̃)

) − 1
(
q(γ̃)

)
σ for all γ ∈ �

0 ≤ −γq(γ) + b
(
q(γ)

) − 1
(
q(γ)

)
σ , for all γ ∈ �

where 1(·) is an indicator function such that 1(q) = 1 if q > 0 and 1(q) = 0 if q = 0.
The first constraint in this problem is the incentive compatibility constraint, while

the second constraint is the ex post participation or individual rationality (IR) constraint.
The IR constraint requires that if a type produces, it needs to earn enough profit to cover
its fixed cost, σ . The constraints also allow for the possibility of types for which q(γ) = 0,
since the IR constraint holds when q(γ) = 0. We say that an allocation is feasible if it
satisfies both of these constraints.

The flexible allocation Before characterizing the solution to the regulator’s problem, it
is convenient to define qf (γ) as the allocation that a monopolist would choose if it were
forced to produce but were otherwise unrestricted. To this end, we let

π(γ, q) ≡ −γq+ b(q)

be the monopolist’s profit function (gross of the fixed cost), and we then define the mo-
nopolist’s flexible allocation as

qf (γ) ≡ arg max
q∈Q

π(γ, q).

The flexible allocation is simply the monopoly output as a function of the monopolist’s
cost type. The associated first-order condition is given by b′(q) − γ = 0.

We note that the limq→0 P(q) > γ and b(0) = 0 imply that qf (γ) > 0. Since P(qmax ) <
γ, we know that qf (γ) < qmax. With these boundary results in place, we have that qf (γ)
is differentiable, with q′

f (γ) = 1/b′′(qf (γ)) < 0 and qf (γ) ∈ (0, qmax ) for all γ ∈ �. Note as
well that P(qf (γ)) > γ, and thus π(γ, qf (γ)) = −γqf (γ) + b(qf (γ)) > 0 for all γ ∈ �.

We further assume that it is optimal for all types to produce if given the ability to set
their monopolist quantity.

Assumption 2. For all types γ ∈ �, π(γ, qf (γ)) >σ .

An implication of Assumption 2 is that, for any given cost type, the regulator’s welfare
is higher when a monopolist with that cost type sets its monopoly output than when it
shuts down and produces zero output. Thus, if the solution to the regulator’s problem
excludes a given cost type from production, then it must be that the regulator is able to
improve the allocation for other cost types through this means.
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1728 Amador and Bagwell Theoretical Economics 17 (2022)

Given the interiority of qf (γ), we may use the associated first-order condition and
establish the following relationship: for all γ ∈ �,

wq
(
γ, qf (γ)

) = 1
α
v′(qf (γ)

) = − 1
α
P ′(qf (γ)

)
qf (γ) = 1

α

[
P

(
qf (γ)

) − γ
]
> 0

Thus, the model embodies downward or negative bias: the agent’s (i.e., the monopolist’s)
preferred q is too low from the principal’s (i.e., the regulator’s) perspective.

The presence of negative bias suggests the possibility of a solution that imposes a
lower bound on q for higher types (or equivalently a cap on the price for higher types).
But note also that the unrestricted monopolist profits are decreasing in γ; thus, it is also
possible that such a regulatory restriction could exclude higher-cost types from produc-
ing, if they are then unable to cover their fixed cost of production.

We show now that, if any exclusion occurs, then the excluded types are always de-
fined by a threshold type, γt ∈ �.

Lemma 1. In any feasible allocation q(·), there exists a cut-off γt ∈ [γ, γ] such that q(γ) =
0 for γ > γt and q(γ) > 0 for γ < γt . In addition, if γt ∈ (γ, γ), then −γtq(γt ) + b(q(γt )) =
σ .

All proofs not in the text are in the Appendix.
The proof uses the property that an incentive compatible allocation for such a model

must be monotonic, which in turn ensures the existence of the cut-off value γt ∈ [γ, γ].
If we were to ignore the IR constraint, the regulator’s problem would fit into the

framework of Amador and Bagwell (2013), and we could use the sufficiency theorems
in that paper to derive conditions under which a simple cap allocation is optimal. How-
ever, as we show below, the IR constraint will always be violated if ignored.

3. Optimality within the set of cap allocations

In this section, we study cap allocations when the IR constraint is ignored and also when
exclusion is possible. Our analysis clarifies the role of the IR constraint and identifies a
candidate allocation for the solution of the regulator’s problem.

3.1 The case without an IR constraint

It is instructive to solve the regulator’s problem under the restriction that the regulator
can choose only among cap allocations, while ignoring the IR constraint. Let us define
a cap allocation as follows.

Definition 1. A cap allocation indexed by x is an allocation qc(γ; x) such that

qc(γ; x) =
{
qf (γ); if qf (γ) ≥ x

x; otherwise

for all γ ∈ �.
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1729

It is straightforward to confirm that a cap allocation is always incentive compatible.
For a given cap allocation, there also exists a critical type γc , defined as follows.14

Definition 2. Given x ∈Q, let γc(x) be the unique value in � such that qf (γ) > x for all
γ ∈ [γ, γc(x)) and qf (γ) < x for all γ ∈ (γc(x), γ].

We allow in the definition of γc(x) that γc(x) = γ, in which case x ≥ qf (γ), so that
the flexible output for all types above γ is below x. Notice that the allocation qc(γ; x)
actually defines a quantity floor rather than a cap. We still refer to this allocation as
a cap allocation, since it corresponds to a cap on permissible prices and links thereby
with the literature on price-cap regulation. Note also that the cap allocation only has
bite in restricting the monopolist’s choice if x > qf (γ).

We define an optimal simple cap allocation to be an optimal cap allocation when the
IR constraint is ignored and all types produce. That is, the optimal simple cap allocation
solves

max
x≥qf (γ)

W c(x)

where W c(x) represents the regulator’s welfare:

W c(x) ≡
∫ γc(x)

γ
w

(
γ, qf (γ)

)
dF(γ) +

∫ γ

γc(x)
w(γ, x)dF(γ) − σ

We now present a necessary condition for an optimal simple cap allocation.15

Lemma 2. The cap allocation indexed by x is an optimal simple cap allocation only if
x > qf (γ) and ∫ γ

γc(x)
wq(γ, x)dF(γ) = 0

In the absence of a participation constraint, we could use results from Amador and
Bagwell (2013) and establish a general set of environments under which the optimal
simple cap allocation is optimal over the full class of incentive compatible allocations.
As we now argue, however, the presence of an IR constraint implies that the optimal
simple cap allocation is not feasible.

The basic point can be understood using Figure 1. The graph on the right in Figure 1
illustrates the optimal simple cap allocation in bold (for the case where γc is in the inte-
rior of �). This allocation is illustrated relative to the flexible allocation, qf (γ), and the
regulator’s ideal (i.e., efficient) allocation, qe(γ), which we define as the allocation that
maximizes w(γ, q).16 Notice that qe(γ) is downward sloping and that qe(γ) > qf (γ),

14Here and in the rest of the paper, we use the convention that the intervals [x, x) and (x, x) correspond
to the empty set.

15The existence of an optimal simple cap allocation follows from standard arguments, given Assump-
tion 1.

16We assume for this graphical analysis that qe(γ) is uniquely determined.
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1730 Amador and Bagwell Theoretical Economics 17 (2022)

Figure 1. Optimal simple cap allocation fails IR.

where the inequality reflects the aforementioned downward bias. For given γ, qe(γ) in-
duces a price equal to marginal cost (i.e., P(qe(γ)) = γ) when α = 1. When α < 1, the
regulator’s ideal allocation entails even higher quantities, and thus drives price below
marginal cost. The optimal simple cap allocation is such that the cap is ideal for the
regulator on average for affected types (i.e., for γ ≥ γc). The graph on the left in Figure 1
illustrates the same information in terms of the induced prices, which are also depicted
in bold. As this graph illustrates, the optimal simple cap allocation places the price cap
at a level that is ideal for the principal on average for affected types. This graph also
suggests that the participation constraint is violated for the highest types when the op-
timal simple cap allocation is used. For type γ, the optimal price cap lies strictly below
the regulator’s ideal price, P(qe(γ)), which equals γ when α = 1 and is less than γ when
α< 1. The optimal price cap is thus strictly below γ; hence, since the fixed cost σ is non-
negative, the IR constraint must fail for the highest-cost type when the optimal simple
cap allocation is used.

The following lemma offers a formal confirmation of this point.

Lemma 3. The optimal simple cap allocation violates the IR constraint for the highest
types.

It is also straightforward to confirm that the IR constraint holds for a cap allocation
if and only if it holds for the highest-cost type.

There are two ways a regulator could in principle deal with the problem that the
optimal simple cap allocation violates the IR constraint. First, it could decide not to
be so tough, and choose a cap that gives sufficient flexibility so that all types choose to
produce. Alternatively, it could choose a cap that is sufficiently tight that some types
choose not to produce. This leads us to consider the “best” cap allocation that satisfies
the IR constraint while allowing types to be excluded from production. We thus proceed
to characterize the class of allocations with caps and exclusion.

3.2 IR constraint and exclusion

Consider a situation where the regulator chooses a cap on the price, and as a result,
some high-cost types may choose not to produce. This is a cap allocation with potential
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1731

exclusion, and it is defined by a quantity x such that any type is free to choose between
producing a quantity higher or equal to x, or not producing at all.

Definition 3. A cap allocation with potential exclusion indexed by x is an allocation
q(γ; x) such that

q(γ; x) =

⎧⎪⎪⎨⎪⎪⎩
qf (γ); if qf (γ) ≥ x,

x; if qf (γ) < x and − γx+ b(x) − σ ≥ 0,

0; otherwise,

for all γ ∈ �.

A cap allocation with potential exclusion is clearly incentive compatible. Without
loss of generality, we can restrict attention to cap allocations such that x ≥ q ≡ qf (γ), as
no type will ever choose to produce below qf (γ) if given the choice to produce more.
Similarly, we can restrict attention to cap allocations such that x ≤ q where q > qf (γ)
is the value that satisfies −γq + b(q) = σ . Imposing a bound x above q is equivalent
to assigning no production for all types (as not even the lowest cost type is willing to
produce that much), and hence considering restrictions above that is unnecessary. Note
that our assumptions guarantee q ∈Q.

Figure 2 presents a graphical representation of a cap allocation with exclusion where
a nonzero measure of types are excluded, some types are constrained at the cap, and
some other types are choosing their monopoly allocation. To describe such an alloca-
tion, recall that, from Lemma 1, we know that any allocation with exclusion satisfies a
threshold property: types above some type γt are excluded from production, while types
below γt produce. Thus, given a bound x, let γt(x) ∈ [γ, γ] be the associated exclusion
threshold. That is, γt(x) is such that maxq≥x{−γq+b(q)−σ } < 0 for all γ ∈ (γt(x), γ] and
maxq≥x{−γq+ b(q) − σ } > 0 for all γ ∈ [γ, γt(x)).

Figure 2. A cap allocation with exclusion. The solid thick line represents a cap allocation with
exclusion.

 15557561, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/T

E
4691 by C

onricyt Fondo Institucional D
el C

onacyt, W
iley O

nline L
ibrary on [19/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1732 Amador and Bagwell Theoretical Economics 17 (2022)

However, not all the types that produce are able to do so at their monopoly level.
Types with a cost smaller than γc(x) would choose their monopoly level if forced to pro-
duce, while types above γc(x) would choose the cap if forced to produce. Note that
γc(x) ≤ γt(x) with strict inequality if q < x< q.

The welfare generated by a cap allocation with potential exclusion is thus

W (x) ≡
∫ γc(x)

γ

[
w

(
γ, qf (γ)

) − σ
]
dF(γ) +

∫ γt (x)

γc(x)

[
w(γ, x) − σ

]
dF(γ) (1)

where the first term represents the regulator’s payoff from giving flexibility to types be-
low γc(x), the second term represents the payoffs generated from types that produce at
the cap, x, and where the payoff of the excluded types is zero.

Let x� be such that x� ∈ argmaxx∈[q,q] W (x); that is, x� represents the optimal cap that

could be imposed.17 Given this cap x�, the associated cap allocation q� can be written
as

q�(γ) =

⎧⎪⎪⎨⎪⎪⎩
qf (γ); γ ∈ [

γ, γc
(
x�

))
x�; γ ∈ [

γc
(
x�

)
, γt

(
x�

)]
0; γ ∈ (

γt
(
x�

)
, γ

] (2)

This cap allocation with potential exclusion q� is our candidate allocation for the solu-
tion to the regulator’s problem. Our goal is thus to determine sufficient conditions under
which q� is also optimal within the set of all feasible allocations.

Having identified our candidate solution q�, we hasten to add that it is not obvious
that the solution to the regulator’s problem indeed takes this form. For example, and as
we discuss in Section 4.2, we can also imagine that the optimal allocation might have
jumps, and thus not take the form of a cap allocation. Further, a property of the alloca-
tion q� is that, if exclusion is not used, then the highest type earns zero profit and satis-
fies the IR constraint with equality. This property, too, is not obvious in our no-transfer
setting, since the allocation for this type affects as well incentive compatible allocations
for lower types.

4. Toward sufficient conditions

We return now to consider the solution to the regulator’s problem, Problem P1. As a
general matter, we do not know whether a cap allocation with or without exclusion is
optimal. Indeed, solving the regulator’s problem directly seems difficult, since the pos-
sibility of excluding some types must be considered. We pursue an alternative approach,
one that divides the problems into several subproblems.

The main idea is as follows:

1. Rather than working with the lower bound on production, we work with the ex-
cluded types directly. Based on Lemma 1, we fix a threshold for excluded types, γt ,

17The existence of x� follows from standard arguments, given Assumption 1.
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1733

and consider the problem of allocating production for types below γt while ignor-
ing the allocation for types higher than γt . That is, we restrict attention to the set of
types [γ, γt ] and study the problem for a regulator that only considers types in that
truncated set and is not allowed to exclude any types in that set from production.18

We obtain conditions under which an optimal allocation in this truncated problem
is a cap allocation such that the threshold or upper-bound type, γt , is indifferent
between producing or not.

2. Next, we argue that such a truncated allocation is incentive compatible when ex-
tended to the entire set [γ, γ] by giving types above γt zero output. The optimal
allocation that results from considering only the truncated set is thus also optimal
when considering the entire set of types for a given level of exclusion.

3. We then look for the best allocation by varying the level of exclusion, which in our
case is indexed by γt . This is a single variable optimization problem.

Toward this goal, let us first consider the regulator’s truncated problem.

4.1 The regulator’s truncated problem

For this problem, we fix γt ∈ (γ, γ] and define �t(γt ) ≡ [γ, γt ].19 The regulator’s trun-
cated problem is to find an allocation, qt : �t(γt ) → Q, that maximizes its payoff subject
to the feasibility constraints and that no type in set �t(γt ) is excluded.20 Formally, the
regulator’s truncated problem may be written as

(Pt) max
qt :�t (γt )→Q

∫
�t (γt )

(
w

(
γ, qt(γ)

) − σ
)
dF(γ) subject to:

γ ∈ arg max
γ̃∈�t (γt )

{−γqt(γ̃) + b
(
qt(γ̃)

) − σ } for all γ ∈ �t(γt )

0 ≤ −γqt(γ) + b
(
qt(γ)

) − σ , for all γ ∈ �t(γt )

Differently from Problem P1, in the regulator’s truncated problem no type in �t(γt ) is
excluded, explaining why the indicator functions do not appear in Problem Pt .21 Similar
to Section 3.1, if we were to look for a simple cap allocation in this truncated problem,
the optimal one would violate the IR constraint for the highest cost type, which in this
case is the threshold or upper-bound type, γt .

We conjecture that a cap allocation where type γt is indifferent between producing
or not is optimal. Let qi(γt ) be the unique value such that

−γtqi(γt ) + b
(
qi(γt )

) = σ , and qi(γt ) > qf (γt ). (3)

18Thus, the regulator assigns production levels and incurs the fixed cost σ for all types in the truncated
set. For an excluded type, by contrast, output is zero and the fixed cost σ is not incurred.

19We ignore the case where γt = γ, as this implies that almost all types are excluded, a situation that
cannot be optimal under our assumptions.

20Within the set of cap allocations, it is sufficient to look for a quantity floor in [q, q]. When checking for
optimality more generally, we do not impose that restriction, and hence qt : �(γt ) →Q.

21A type in �t (γt ) could still be assigned zero output, but the fixed cost is incurred. Note that if σ > 0,
such assignment violates the type’s IR constraint.

 15557561, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/T

E
4691 by C

onricyt Fondo Institucional D
el C

onacyt, W
iley O

nline L
ibrary on [19/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1734 Amador and Bagwell Theoretical Economics 17 (2022)

Figure 3. The truncated cap allocation, q�t (γ|γt ).

Thus, qi(γt ) is the output level that exceeds γt ’s monopoly level and ensures that this
type is indifferent between producing at that level or not. In other words, it corresponds
to a price that equals the average cost for type γt . Note that under our assumptions, such
qi(γt ) ∈Q exists.

We define γH(γt ) ∈ [γ, γt ] to be the value such that qi(γt ) ≤ qf (γ) for γ < γH(γt ), and
qi(γt ) ≥ qf (γ) for γ > γH(γt ). Note that γH(γt ) = γc(qi(γt )) and that γH(γt ) < γt given
γt > γ.

With these objects, we can define the truncated cap allocation, q�t (γ|γt ):

q�t (γ|γt ) =
{
qf (γ); γ ∈ [γ, γH(γt ))

qi(γt ); γ ∈ [
γH(γt ), γt

] (4)

The allocation q�t (γ|γt ) is continuous in γ and features full pooling if γH(γt ) = γ. If
γH(γt ) is interior to the interval �t(γt ), then qi(γt ) coincides with the flexible quantity
chosen by type γH(γt ). Figure 3 displays the two possible cases for q�t for two different
values of γt . Panel (a) shows the case with partial pooling. Panel (b) shows the case
where γt is sufficiently small that full pooling of all types at the cap results.

We seek conditions under which q�t (γ|γt ) is the optimal solution to the regulator’s
truncated problem. To present our next result, we require a couple of definitions. Let

G(γ|γt ) ≡ −κF(γt ) + κ

[
γ − b′(qi(γt )

)
γ − γH(γt )

]
F(γ)

+ 1
γ − γH(γt )

∫ γ

γH (γt )
wq

(
γ̃, qi(γt )

)
f (γ̃)dγ̃, (5)

for γ > γH(γt ) and where, following Amador and Bagwell (2013), κ is a relative concavity
parameter defined as

κ≡ min
q∈Q

{
1 + v′′(q)

αb′′(q)

}
.

We let G(γH(γt )|γt ) ≡ limγ↓γH (γt ) G(γ|γt ), which exists and is a finite number.
We may now state our general sufficiency result as follows.
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1735

Proposition 1 (Sufficient conditions). If:

(i) G(γ|γt ) ≤G(γt|γt ) for all γ ∈ [γH(γt ), γt ], where G is given by (5); and

(ii) M1(γ) ≡ κF(γ) +wq(γ, qf (γ))f (γ) is nondecreasing in γ for γ ∈ [γ, γH(γt )),

then the cap allocation q�t (γ|γt ) solves the regulator’s truncated problem, Problem Pt .

Our proof approach follows a guess-and-verify structure. To begin, we follow stan-
dard methods and rewrite the incentive constraint in the regulator’s truncated problem
as an integral equation and a monotonicity requirement (namely, that qt(γ) must be
nonincreasing).22 Next, we embed the monotonicity requirement into the choice set,
and we express the integral equation equivalently in terms of two inequality conditions.
The regulator’s truncated problem is thereby represented as a maximization problem
over functions belonging to a choice set of nondecreasing functions that satisfy three in-
equality constraints, where one of the constraints is the IR constraint. With the problem
set up in this fashion, we conjecture that the cap allocation q�t (γ|γt ) is the solution. To
confirm this conjecture, we construct multiplier functions for each of the three inequal-
ity constraints. Under the conditions stated in Proposition 1 and for the constructed
multiplier functions, we find that the multiplier functions are nondecreasing, the corre-
sponding Lagrangian is concave, and the cap allocation satisfies first-order conditions
and a complementary slackness condition. Building on work by Amador and Bagwell
(2013), we show that these findings are sufficient to conclude that q�t (γ|γt ) solves the
regulator’s truncated problem.23

4.2 Intuition

We now develop some intuition for the interpretation of Proposition 1. We begin with
part (ii). Observe that part (ii) is more easily satisfied when κ is big. Referring to the
definition of κ, we thus conclude that part (ii) is more easily satisfied when the minimum
value for 1 + v′′(q)

αb′′(q) is big. Since wq(γ, qf (γ)) > 0, we see that part (ii) is also more easily
satisfied when the density is nondecreasing for γ ∈ [γ, γH(γt )).

To see why the relative sizes of 1
αv

′′(q) and b′′(q) and the density slope matter, we
consider alternatives to the truncated cap allocation. If the truncated cap allocation

22We emphasize that feasible allocations may be discontinuous. As illustrated in the intuition developed
just below, our proof approach thus must establish that the cap allocation q�t (γ|γt ) is optimal among a set
of monotone and possibly discontinuous functions.

23It is instructive here to compare our regulator’s truncated problem, in which transfers are unavail-
able, with the standard (Baron–Myerson) framework in which transfers are available. In the solution ap-
proach for the standard framework, the integral equation is substituted into the objective, the IR constraint
is shown to bind for the highest type, the IR constraint for the highest type is substituted into the objec-
tive, and the resulting objective is then maximized pointwise. If the solution satisfies the monotonicity
constraint, then the problem is solved. By contrast, in our no-transfers setting, we cannot substitute the
integral equation into the objective, since we do not have a remaining transfer instrument with which to
ensure that the solution of the resulting optimization problem satisfies the integral equation. For the same
reason, we cannot substitute the IR constraint for the highest type into the objective. Indeed, as a general
matter, when transfers are unavailable it is no longer obvious that the IR constraint for the highest type
must bind.
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1736 Amador and Bagwell Theoretical Economics 17 (2022)

Figure 4. Drilling a hole (with σ > 0).

is optimal among all feasible allocations for the regulator’s truncated problem, then it
must be preferred by the regulator to alternative feasible allocations that are generated
by “drilling holes” in the flexible part of the allocation. Figure 4 illustrates one such
alternative allocation, in which output levels between q1 ≡ qf (γ1 ) and q2 ≡ qf (γ2 ) are
prohibited and where γ < γ1 < γ2 < γH . There then exists a unique type γ̃ ∈ (γ1, γ2 ) that
is indifferent between q1 and q2. The alternative allocation thus induces a “step” at γ̃,
with the allocation q1 selected by γ ∈ [γ1, γ̃) and the allocation q2 selected by γ ∈ [γ̃, γ2],
where for simplicity we place type γ̃ with the higher types.

In comparison to the truncated cap allocation, the alternative allocation has advan-
tages and disadvantages. First, the alternative allocation generates output choices for
γ ∈ [γ1, γ̃) that are closer to the the regulator’s ideal choices for such types; however, the
alternative allocation also results in output choices for γ ∈ [γ̃, γ2] that are further from
the regulator’s ideal choices for such types. In line with our discussion above, these ob-
servations suggest that a nondecreasing density should work in favor of the truncated
cap allocation. Second, the alternative allocation increases the variance of the induced
allocation around qf (γ) over [γ1, γ2]. Consistent with our preceding discussion, this ef-
fect brings into consideration the relative magnitudes of 1

αv
′′(q) and b′′(q), where the lat-

ter determines the slope of qf (γ). If v(q) is concave, then the variance effect should work
in favor of the truncated cap allocation, since the regulator would then not welcome an
increase in variance. If instead v(q) is convex, then the regulator would benefit from
the greater variance afforded by the alternative allocation, with the benefit being larger
when α is smaller. Based on this perspective, we may understand that the truncated al-
location could remain optimal when v(q) is convex, if the density rises fast enough, α is
sufficiently large and/or b′′(q) is large in absolute value (so that qf (γ) is flat, in which
case steps add little variation).

The intuitive discussion presented here considers only a subset of feasible alterna-
tive allocations that introduce variations in the flexible region. In our no-transfer setting,
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1737

the incentive compatibility constraint implies that an allocation must be given by the
flexible allocation over any interval for which the allocation is continuous and strictly
decreasing; however, an incentive compatible allocation may include many points of
discontinuity (steps), where any such point hurdles the flexible allocation as illustrated
in Figure 4.24 Our discussion above considers only an alternative allocation with a sin-
gle step, but this discussion provides an intuitive foundation for understanding more
generally the key forces at play.

We turn now to consider the intuition associated with part (i) of Proposition 1. For
type γt , the IR constraint holds with equality at the output choices qi(γt ) and q′, where
q′ < qf (γt ) is defined so that type γt is indifferent between qi(γt ) and q′; thus, the IR
constraint for type γt is satisfied provided that the allocation for this type resides in the
interval [q′, qi(γt )]. As noted above, it is also not obvious that the IR constraint must
bind for type γt . Part (i) of Proposition 1 provides conditions under which the solution
to the regulator’s truncated problem is such that type γt selects qi(γt ) and has a binding
IR constraint.

More formally, we show in the proof that the value of the multiplier function for
the IR constraint of type γt equals G(γt|γt ). The proposed allocation implies that
G(γt|γt ) ≥ 0 (as shown in the proof of Proposition 1), confirming that the multiplier
on the IR constraint is nonnegative; that is, the shadow price of relaxing the IR con-
straint for type γt is nonnegative. Part (i) of Proposition 1 goes further and requires
that G(γ|γt ) ≤ G(γt|γt ) for all γ ∈ [γH(γt ), γt ]. This condition ensures that the regu-
lator cannot improve on the cap allocation q�t (γ|γt ) by altering the allocation for types
γ ∈ [γH(γt ), γt ] while respecting the monotonicity requirement. In particular, it rules
out alternative allocations that introduce steps within the [γH , γt ] region.25

For additional insight, we may compare condition (i) with the case where the IR con-
straint is not present (or not binding). Consider, for example, the analysis of Amador and
Bagwell (2013), a case without IR constraints and with the additional requirement that
γH(γt ) be interior. In that case, G(γt|γt ) = 0, and their condition (c2) for the optimality
of a cap is equivalent to our condition that G(γ|γt ) ≤G(γt|γt ).26

24For further discussion, see Melumad and Shibano (1991).
25For the case of the special family of preferences introduced in (6), one can confirm by direct calcula-

tions that condition (i) is sufficient to guarantee that introducing a step in this region is not an improve-
ment. Furthermore, for this family of preferences, condition (i) and ruling out the optimality of introducing
a step in this pooling region are equivalent conditions when the IR constraint is not present, as shown in
Amador and Bagwell (2013).

26For case where γH = γ, Amador, Bagwell, and Frankel (2018) recover conditions for optimality of a cap
without the presence of the IR constraint. Our condition is related but a bit more complex. For example,
our condition requires that

∫ γ

γ
wq

(
γ, qi(γ)

)
dF(γ) ≥ 0,

which holds with equality in Amador, Bagwell, and Frankel (2018). In our case, the regulator would value
an increase in q for all types, but such an increase is infeasible because of the binding IR constraint.
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1738 Amador and Bagwell Theoretical Economics 17 (2022)

5. Global optimality

In this section, we present a proposition that provides sufficient conditions for the global
optimality of the cap allocation with potential exclusion q�. We then provide several
results that facilitate the application of the sufficient conditions. Finally, we discuss how
our results can be used to characterize optimal regulation in the “no-exclusion” scenario
mentioned in the Introduction.

The results of the previous section offer a characterization of the optimal solution
given an exogenous amount of exclusion as defined by the fixed threshold or upper-
bound type, γt . For every exclusion threshold γt , we found sufficient conditions for the
associated truncated cap allocation q�t , defined in (4), to be optimal when restricting
attention only to those types not excluded from production. However, it is direct to argue
now that, given an amount of exclusion, the truncated cap allocation is optimal when
attention is widened to include all types. Note that the only potential issue is that the
q�t allocation when extended for all types must remain incentive compatible. But this is
straightforward: since type γt is indifferent between producing or not, all types above γt
strictly prefer not to produce, as they face a higher marginal cost.

We have the following result.

Proposition 2. Assume that parts (i) and (ii) of Proposition 1 hold for all γt ∈ (γ, γ].
Then the cap allocation with potential exclusion q� defined in (2) solves the regulator’s
problem, Problem P1.

Proof. We know from Lemma 1 that any level of exclusion is given by a threshold
γt ∈ (γ, γ]. Given any level of exclusion γt , the allocation q�t (γ|γt ) defined in equation
(4) remains a feasible allocation when the allocation is extended to entire type space by
assigning no production to types strictly above γt . This follows because type γt is in-
different between producing or not in the q�t (γ|γt ) allocation, and thus all types higher
than γt strictly prefer not to produce, as prescribed by the allocation.

Thus, for a given level of exclusion, γt , Proposition 1 guarantees that the allocation
q�t (γ|γt ) extended over the entire type space is optimal within all feasible allocations that
deliver the same level of exclusion.

Note that the allocation q�(γ) is optimal among all q�t (γ|γt ) allocations for all γt ∈
(γ, γ]. We can ignore any allocation where γt = γ (i.e., full exclusion) as such an alloca-
tion is dominated by the fully flexible allocation. As a result, q�(γ) is optimal among the
set of all feasible allocations.

We now provide several results that facilitate the application of our propositions.
We develop three approaches. We first provide a corollary that states simple conditions
under which our sufficient conditions for our propositions are sure to hold. We next
provide a second corollary, which identifies for a family of demand functions a sim-
ple inequality condition that guarantees the satisfaction of the sufficient conditions for
our propositions. We show that the demand family includes linear demand, constant
elasticity demand, and log demand functions, and we derive and interpret the corre-
sponding inequality condition for each of these demand specifications. Finally, a third
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1739

approach is to check the sufficient conditions for our propositions directly. To illustrate
this approach, we consider an example with exponential demand.

We begin with the following corollary, which provides simple and easy-to-check con-
ditions for Proposition 1 and 2.

Corollary 1. Suppose that κ ≥ 1/2. For given γt , if f (γ) is nondecreasing for all γ ∈
[γ, γt ], then conditions (i) and (ii) of Proposition 1 hold. If f (γ) is nondecreasing for all
γ ∈ [γ, γ], then the cap allocation with potential exclusion q� is optimal within the set of
all feasible allocations.

The relative concavity and monotone density sufficient conditions in Corollary 1 are
directly consistent with the intuition developed in Section 4.2. In particular, we note
that κ ≥ 1/2 is sure to hold if v(q) is weakly concave; further, this inequality can hold
as well when v(q) is convex, if α is sufficiently large, and/or b′′(q) is sufficiently large in
absolute value (so that qf (γ) is relatively flat).27

Let us also point out that the conditions in Corollary 1 hold independently of the
value of the fixed cost, σ . That is, if κ≥ 1/2 and f is nondecreasing for its entire support,
then the optimal cap allocation with potential exclusion, q�, is optimal for any σ . Note
that q� is itself affected by the value of σ , but Corollary 1 guarantees that its global op-
timality is not. We note in particular that a higher σ generates a lower value for qi(γt ),
corresponding to a higher price cap. Also, a different value of σ may change the optimal
value of γt embedded in q�.

We proceed now to our second approach for facilitating the application of our
propositions. In the Appendix proof of Corollary 1, we show that if the following M2(γ)
function,

M2(γ) ≡ κF(γ) + 1
α
v′(qi(γt )

)
f (γ) + (κ− 1)

(
γ − b′(qi(γt )

))
f (γ),

is nondecreasing in [γH(γt ), γt ], then part (i) of Proposition 1 holds. We now show that
for a demand family (that includes several commonly used examples as we show below),
M1(γ) = M2(γ); thus, for this family, if part (ii) of Proposition 1 holds globally for all
γ ∈ [γ, γ], then part (i) holds as well.

Toward this end, we consider a family of demand functions such that28

P ′(q)
P(q)

q = a0 + b0

P(q)
for all q ∈ (0, qmax] with a0 	= −1. (6)

We have the following result.

27The result that higher α makes the condition κ ≥ 1/2 in Corollary 1 easier to hold is more general.
Indeed, it is possible to show that a higher value of α makes conditions (i) and (ii) in Proposition 1 easier to
satisfy.

28As we discuss later, this family of demand functions generates payoff functions w and b that belong to
the preference family identified by Amador and Bagwell (2013) in their Proposition 2. This family is also the
one studied by the linear delegation approach developed by Kolotilin and Zapechelnyuk (2019).
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1740 Amador and Bagwell Theoretical Economics 17 (2022)

Lemma 4. Suppose that (6) holds. Then

(a) v(q) = − a0
1+a0

b(q) − b0
1+a0

q for all q ∈Q,

(b) κ= 1 + 1
α
v′′(q)
b′′(q) = 1 − 1

α
a0

1+a0
,

(c) M1(γ) =M2(γ) for all γ ∈ [γ, γ].

For the demand family stated in equation (6), we can obtain a general sufficient con-
dition for the results in Proposition 1 (and 2) to hold.

Corollary 2. Suppose that P satisfies (6). If

(2κ− 1)f (γ) + 1
α
v′(qf (γ)

)
f ′(γ) ≥ 0 (7)

holds for all γ ∈ [γ, γ], then conditions (i) and (ii) of Proposition 1 hold for all γt ∈ (γ, γ].

It is instructive to compare Corollaries 1 and 2. Inequality (7) clearly holds if κ≥ 1/2
and f (γ) is nondecreasing for all γ ∈ [γ, γ]. For the demand family identified in equation
(6), inequality (7) further indicates exactly how a relaxation of either of these conditions
can be accommodated by an offsetting strengthening of the other. Note that similar
to Corollary 1, the condition in Corollary 2 is independent of the value of σ , and thus
implies that the optimal cap allocation with potential exclusion q� as defined in (2) is
optimal for any σ .

As we now illustrate, the demand family defined in equation (6) includes several
common examples as special cases. For each of these examples, we also represent the
form that inequality (7) takes and thereby derive sufficient conditions for the optimality
of the cap allocation with potential exclusion q�.

Linear demand Consider P(q) = μ−βq with μ> γ, β> 0, and Q = [0, μ/β−ε] for ε > 0
small. For this example, qf (γ) = (μ − γ)/(2β), v(q) = βq2/2, and κ = 1 − 1

2α . Assump-
tion 1 is satisfied for ε > 0 sufficiently small if α ∈ [μ/(μ + γ), 1] where 1 > μ/(μ + γ) >
1/2 follows from μ > γ > 0. Assumption 2 is satisfied if qf (γ) >

√
σ/β. This demand

satisfies condition (6) with a0 = 1 and b0 = −μ. Condition (7) is satisfied in this example
if

f ′(γ)
f (γ)

≥ 2(1 − α)
μ− γ

for all γ ∈ [γ, γ].

Constant elasticity demand Consider P(q) = q
− 1

η with η > 1, and let Q = [0, qmax]

where qmax > 0. For this example, qf (γ) = ( γη
η−1 )−η, v(q) = 1

η−1q
η−1
η , and κ = 1 + 1

α
1

η−1 .

Assumption 1 is satisfied if qmax
− 1

η <
γ

1− 1
η (1− 1

α )
where 0 <

γ

1− 1
η (1− 1

α )
≤ γ follows from

α ∈ (0, 1] and γ > 0. Assumption 2 is satisfied if ( γη
η−1 )1−η 1

η > σ . This demand satis-

fies condition (6) with a0 = − 1
η and b0 = 0. Condition (7) is satisfied in this example
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1741

if

f ′(γ)
f (γ)

≥ −α(η− 1) + 2
γ

for all γ ∈ [γ, γ].

Logarithmic demand Consider P(q) = μ−β lnq with β> 0 and Q = [0, eμ/β−ε] for ε >

0 small. For this example, qf (γ) = e
μ−β−γ

β , v(q) = βq, and κ= 1. Assumption 1 is satisfied

for ε > 0 sufficiently small if β(1 − α)/α < γ. Assumption 2 is satisfied if βe
μ−β−γ

β > σ .
This demand satisfies condition (6) with a0 = 0 and b0 = −β. Condition (7) is satisfied
in this example if

f ′(γ)
f (γ)

≥ −α

β

for all γ ∈ [γ, γ].
Of course, the demand family defined by (6) includes examples beyond the three

examples highlighted here.29 The three examples, however, are commonly used in the
literature and illustrate the breadth of the demand family defined by (6).

The sufficient conditions derived for the three examples admit an interpretation that
is in line with the intuition developed previously whereby a rising density f (γ) and a
concave v(q) work in favor of the optimality of the cap allocation. For the constant
elasticity and log demand examples, v(q) is concave and linear, respectively, and the
sufficient conditions hold when f (γ) is nondecreasing; indeed, for these examples, the
sufficient conditions are satisfied even when f (γ) is decreasing, provided that it does not
fall too quickly. By contrast, for the linear demand example, v(q) is convex, which works
against the optimality of the cap allocation. The sufficient condition for this example
thus places a more demanding restriction on the density: the condition fails if f (γ) is
anywhere decreasing, and it requires that f (γ) is increasing (nondecreasing) when α< 1
(α = 1). We note as well that in all of these examples a higher value of α also supports
the sufficient conditions (as expected from our previous discussion).

Interestingly, the demand family we have identified corresponds to the “linear del-
egation” case studied in Kolotilin and Zapechelnyuk (2019) for the regulation problem
when σ = 0.30 However, we are not restricted to demand functions within the family
that satisfies condition (6). For other demand functions, we could use parts (i) and (ii)

29For example, the demand function P(q) = μ−βqη satisfies (6) with a0 = η and b0 = −μη.
30Kolotilin and Zapechelnyuk (2019) consider linear delegation problems where the principal’s objec-

tive, V (γ, q), satisfies Vq(γ, q) = −γ − c(q) and where the agent’s objective, U(γ, q), satisfies Uq(γ, q) =
d(γ) − c(q) where c and d are continuous functions and c is strictly increasing. This implies that
Vq(γ, q) − Uq(γ, q) = γ − d(γ). Thus, Vq(γ, q) − Uq(γ, q) is independent of q. In our case, for σ = 0,
Vq(γ, q) = wq(γ, q) = −γ + b′(q) + 1

α v
′(q). Given that the objective of the agent can be modified by any

strictly increasing affine transformation, we have that in our case, Uq(γ, q) = A(−γ + b′(q)) for any A> 0.
Hence, linear delegation requires that there exists A> 0 such that Vq(γ, q) − Uq(γ, q) is independent of q,
or alternatively, that there exists A> 0 and B such that

b′(q) + 1
α
v′(q) −Ab′(q) = B.
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1742 Amador and Bagwell Theoretical Economics 17 (2022)

of Propositions 1 and 2 directly. Alternatively, Corollary 1 also allows us to find simple
conditions. Our results also apply when there is a fixed cost of production, σ > 0.

To illustrate the approach in which parts (i) and (ii) of Propositions 1 and 2 are di-
rectly used, we consider next an example with exponential demand. We note that this
example does not fit in the family specified by condition (6).

Exponential demand Consider P(q) = βe−q with β > max{γ, γe2} with Q = [0, 2 − ε]
for ε > 0 small. For this example, the sign of v′′(q) varies over Q. We find that v′′(q) =
βe−q(1 − q) and κ = 1 − 1

2α . Assumption 1 is satisfied for ε > 0 sufficiently small if
α > 2/(1 + γ) where this inequality when combined with α ∈ (0, 1] implies that γ > 1.
Assumption 2 is satisfied when maxq∈Q(βe−q − γ)q > σ . Corollary 1 holds if α = 1 and f

if nondecreasing for all γ ∈ [γ, γ].
At this point, it is convenient to pause and consider the “no-exclusion” scenario

mentioned in the Introduction, wherein the regulator must ensure that all types choose
to produce so that exclusion never occurs. To characterize the optimal regulatory policy
for this scenario, we may refer to the truncated cap allocation q�t (γ|γt ), defined in (4),
for the special case where γt = γ. This allocation corresponds to a price-cap regulatory
policy, where the price cap is set at the second-best level that leaves a monopolist with
the highest possible cost, γ, with zero profit (inclusive of the fixed cost, σ). To establish
conditions for the optimality of this policy for the no-exclusion scenario, we simply set
γt = γ and refer to Proposition 1, Corollaries 1 and 2, and the demand examples above.
Thus, for example, this price-cap allocation is optimal for the no-exclusion scenario if
the demand function takes a linear, constant elasticity or log form and if a simple in-
equality condition holds, respectively, where the inequality condition is sure to hold if
the density is nondecreasing over the full support.

By contrast, a characterization of optimal regulation for the general scenario in
which exclusion is allowed must also determine the optimal value for γt . In other words,
the optimal regulatory policy for the general scenario must determine as well the degree
(if any) of exclusion. We develop our results for the optimal degree of exclusion in the
next section.

6. When to exclude

In the previous section, we obtain conditions that guarantee that the cap allocation with
potential exclusion, q� defined in (2), is optimal within the set of all feasible allocations.
In this section, we study the properties of this optimal allocation, q�, and in particular,
whether or not some types are excluded from production.

Given a level of exclusion γt , we can write the welfare function as

W (γt ) =
∫ γH (γt )

γ

(
w

(
γ, qf (γ)

) − σ
)
dF(γ) +

∫ γt

γH (γt )

(
w

(
γ, qi(γt )

) − σ
)
dF(γ)

Using b′(q) = P ′(q)q+ P(q) and v′(q) = −qP ′(q), the above delivers condition (6). Note that demand func-
tions within this family deliver payoff functions w(γ, q) and b(q) that belong to the restricted preference
family previously identified by Amador and Bagwell (2013) in their Proposition 2.
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1743

where as before qi(γt ) represents the quantity strictly above qf (γt ) that makes type γt
indifferent between producing or not, as in (3).

Taking the derivative of the welfare function with respect to γt , we obtain that31

W ′(γt ) = (
w

(
γt , qi(γt )

) − σ
)
f (γt ) +

∫ γt

γH (γt )
wq

(
γ, qi(γt )

)
q′
i(γt )dF(γ)

This first-order condition has a simple intuition. Increasing the exclusion threshold γt
generates two effects. As indicated in the first term, it brings the marginal type that
was previously excluded back into production. But in addition it changes the quantity
at which all pooled types produce, generating an inframarginal effect that is captured
by the second term. The following result shows that increasing the exclusion threshold
reduces the quantity at which pooled types produce.

Lemma 5. The quantity of the indifferent type, qi(γt ), is such that q′
i(γt ) < 0. In addition,

γt > γH(γt ) for all γt > γ.

We now develop conditions under which no exclusion (γt = γ) is optimal. Using the
definition of w, together with the definitions of γt and γH(γt ), we obtain

W ′(γt ) = 1
α
v
(
qi(γt )

)
f (γt ) − qi(γt )

(
1
α
v′(qi(γt )

))F(γt ) − F
(
γH(γt )

)
γt − b′(qi(γt )

)
+ qi(γt )

γt − b′(qi(γt )
) ∫ γt

γH (γt )

(
γ − b′(qi(γt )

))
dF(γ)

for all γt ∈ (γ, γ].32

We know that γ > b′(qi(γt )) for all γ > γH(γt ). So, the last term in the above is strictly
positive. Thus,

W ′(γt ) >
1
α
v
(
qi(γt )

)
f (γt ) − qi(γt )

(
1
α
v′(qi(γt )

))F(γt ) − F
(
γH(γt )

)
γt − b′(qi(γt )

)
= 1

α
v
(
qi(γt )

)[
f (γt ) − F(γt ) − F

(
γH(γt )

)
γt − b′(qi(γt )

) ]

+ 1
α

[
v
(
qi(γt )

) − v′(qi(γt )
)
qi(γt )

]F(γt ) − F
(
γH(γt )

)
γt − b′(qi(γt )

) .

Using b′(qi(γt )) ≤ γH(γt ) < γt , we have that

f (γt ) − F(γt ) − F
(
γH(γt )

)
γt − b′(qi(γt )

) ≥ f (γt ) − F(γt ) − F
(
γH(γt )

)
γt − γH(γt )

=

∫ γt

γH (γt )

[
f (γt ) − f (γ)

]
dγ

γt − γH(γt )
≥ 0,

31 The function γH (γt ) may fail to be differentiable at the highest value for γt at which γH (γt ) = γ; how-
ever, the differentiability of γH does not affect the differentiability of the objective. An argument similar to
the one used in the proof of Lemma 2 can be used to show differentiability of the objective.

32The value of α does not affect qi(γt ). So, using the above equation one can show that αW ′(γt ) is strictly
increasing in α. Thus, the optimal exclusion threshold γt is weakly increasing in α.
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1744 Amador and Bagwell Theoretical Economics 17 (2022)

where the last inequality follows if f (γ) is nondecreasing. If v(q) is weakly concave, then
v(q) − v′(q)q ≥ 0 as v(0) = 0. Hence, we have the following.

Proposition 3 (No exclusion). If f (γ) is nondecreasing for all γ ∈ [γ, γ] and v(q) is
weakly concave for all q ∈ Q, then W ′(γt ) > 0 for all γt ∈ (γ, γ]. Under these conditions,
Corollary 1 holds, and thus a cap with no exclusion (γt = γ) solves the regulator’s problem.

Proof. The proof is given in the text.

Proposition 3 delivers a general set of conditions under which there is no exclusion.
The log demand and constant elasticity demand examples satisfy the requirement that
v is weakly concave. In addition, if f is nondecreasing, then the optimal allocation in
these examples is a cap allocation without exclusion.

It may be helpful to discuss the role of the fixed cost, σ , in these results. If σ = 0,
then the possibility of exclusion is included in the truncated problem, as the regulator
could assign zero output to some types and still satisfy the IR constraint for that prob-
lem. Thus, if Proposition 1 holds at γt = γ, then a cap allocation without exclusion is
optimal. When σ > 0, exclusion is no longer included in the truncated problem. Exclu-
sion remains feasible in the regulator’s problem, however, and indeed the assignment of
zero output carries the extra benefit that the fixed cost is saved. Proposition 3 covers this
case as well and shows that exclusion is still not used.

For the linear demand example, however, v is strictly convex, and Proposition 3 thus
does not apply. For this example, in the case of a uniform distribution with α = 1 (so that
the regulator maximizes aggregate social surplus), and σ > 0, we have a very different
result.

Proposition 4 (Exclusion). Consider the linear demand example and suppose that F is
uniform and α = 1. If σ > 0, then

(a) In any optimal allocation, γt is such that γH(γt ) = γ.

(b) If qi(γ) < qf (γ), then in any optimal allocation γt < γ and qi(γt ) = q� where q� is a
solution of

(μ− γ)
(
μ− γ − 2βq�

)(
q�

)2

σ −β
(
q�

)2 = σ .

This proposition contains two results. The first is that in the linear demand example
with a uniform distribution and α = 1, it is always optimal to pool all types at the cap
(part (a)). Part (b) argues that if not all types pool at the cap when an allocation fea-
tures no exclusion, that is, when γt = γ, then some higher-cost types will necessarily be
excluded in any optimal allocation.33

33The proposition only characterizes the solution for σ > 0. When σ = 0, if qi(γ) < qf (γ), we can show
that any γt such that qi(γt ) ≤ qf (γ) is optimal. Thus, the regulator is indifferent between some exclusion or
none. Kolotilin and Zapechelnyuk (2019) characterize the solution for this case (α = 1, σ = 0, and linear de-
mand) when the distribution F is unimodal and show that optimal regulation involves a cap with exclusion.
This case goes beyond our Corollary 2, which requires a nondecreasing density.
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1745

The above result demonstrates that no-exclusion result of Proposition 3 is not a gen-
eral property. Because of its tractability, the linear demand example with a uniform dis-
tribution and α = 1 is often used in the literature. For this case, we have shown that a cap
allocation is optimal but that such an allocation also features the exclusion of higher-
cost types.

In this example, the optimal regulation contract provides for a disconnected set of
quantities (a quantity of zero for excluded types and an interval of quantities bounded
away from zero for nonexcluded types). This contract is clearly distinct from the interval
allocations that are typically featured in the delegation literature.

7. Conclusion

We analyze the Baron and Myerson (1982) model of regulation under the restriction that
transfers are infeasible. To do this, we extend the Lagrangian approach to delegation
problems of Amador and Bagwell (2013) to include an ex post participation constraint
that allows for the possible exclusion of some types. We report sufficient conditions
under which optimal regulation takes the simple and common form of price-cap regu-
lation. We identify families of demand and distribution functions and welfare weights
that satisfy our sufficient conditions. We also report conditions under which the optimal
price cap is set at a level such that no types are excluded. Using a linear demand exam-
ple, we show that exclusion of higher-cost types can be optimal when these conditions
fail to hold. Our analysis also can be used to provide conditions for the optimality of
price-cap regulation when an ex post participation constraint is present and exclusion
is infeasible.

Our work points to several directions for future research. First, we provide general
sufficient conditions so that a cap allocation with potential exclusion is optimal. These
sufficient conditions guarantee that the Lagrangian approach can be used to show that
a price cap is optimal for any given level of exclusion. Thus, the sufficient conditions may
be stronger than necessary since the price-cap structure is required to be optimal even
for exclusion levels that are suboptimal. It should be possible to relax these conditions
by using the Lagrangian approach only at the optimal level of exclusion.

Second, if our sufficient conditions fail, it may be that the optimal allocation is not
a price cap with potential exclusion. In that case, the Lagrangian approach requires us
to identify the alternative solution candidate. It should be possible as well to construct
Lagrange multipliers and generate sufficient conditions for such a case.

Third, we focus on a single-product monopolist and leave for future research the
multiproduct expression of our findings. More generally, the characterization of opti-
mal delegation contracts in multidimensional settings is a challenging and important
avenue for future work.34

34For related work, see Ambrus and Egorov (2017), Amador and Bagwell (2020), Armstrong and Vickers
(2010), Frankel (2014), Frankel (2016), and Koessler and Martimort (2012). The paper by Frankel (2016) is
perhaps of special relevance here. He considers a model with multiple actions and establishes the exact
optimality of a generalized cap rule, but under the assumptions that the loss function is quadratic, the
agent has a constant bias, the ex ante distribution of states is normal i.i.d., and the participation constraint
is absent.
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1746 Amador and Bagwell Theoretical Economics 17 (2022)

Fourth, our analysis extends the optimal delegation literature to include an ex-post
participation constraint that allows for potential exclusion within a regulation frame-
work. We expect that other applications likewise may be naturally captured in versions
of the delegation model developed here.

Appendix A: Proof of Lemma 1

Proof. Suppose to the contrary that for some γ1 and γ2 with γ ≤ γ1 < γ2 ≤ γ, we have a
feasible allocation such that q(γ1 ) = 0 < q(γ2 ). A monopolist with type γ1 then receives
a profit of zero and would gain by violating its incentive compatibility constraint and
selecting instead the positive output intended for type γ2:

−γ1q(γ2 ) + b
(
q(γ2 )

) − σ > −γ2q(γ2 ) + b
(
q(γ2 )

) − σ ≥ 0

where the first inequality follows since q(γ2 ) > 0 and γ1 < γ2, and the second inequality
follows since under incentive compatibility a monopolist with type γ2 cannot gain from
selecting q(γ1 ) = 0 rather than q(γ2 ).

For the second part, suppose that for γt ∈ (γ, γ), −γtq(γt ) + b(q(γt )) > σ . Then, for
all sufficiently small ε > 0, we have that −(γt + ε)q(γt ) + b(q(γt )) > σ . As a result, type
γ1 = γt + ε will prefer to produce rather than not, a contradiction of the cut-off property.
Suppose instead that −γtq(γt ) + b(q(γt )) < σ , so type γt strictly prefers not to produce.
For all sufficiently small ε > 0, we have that −(γt − ε)q(γt − ε) + b(q(γt − ε)) >σ , by the
cut-off property and strict monotonicity of the profit function in γ when q > 0. But this
implies that −γtq(γt − ε) + b(q(γt − ε)) >σ − εq(γt − ε), and thus, for sufficiently small
ε, type γt would strictly prefer to produce given Assumption 2 and choose type γt − ε’s
choice, a violation of feasibility.

Appendix B: Proof of Lemma 2

Proof. We start by observing that for any � 	= 0,

W c(x+�) −W c(x)
�

=
∫ γc(x)

γc(x+�)

w(γ, x+�) −w
(
γ, qf (γ)

)
�

dF(γ)

+
∫ γ

γc(x)

w(γ, x+�) −w(γ, x)
�

dF(γ) (8)

Then we consider two different cases.
Case 1. x > qf (γ). Then for all |�| > 0 small enough, we have that x+�> qf (γ), and

as a result γc(x+�) = γc(x) = γ, and thus

W c(x+�) −W c(x)
�

=
∫ γ

γc(x)

w(γ, x+�) −w(γ, x)
�

dF(γ)

Taking the limit as �→ 0, we obtain

dW c(x)
dx

=
∫ γ

γc(x)
wq(γ, x)dF(γ)
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1747

Case 2. 0 < qf (γ) < x ≤ qf (γ). Consider a neighborhood Ux around x such that that

0 /∈ cl(Ux ). Let Kx = maxy∈cl(Ux ) |b′(y ) + v′(y )/α|. Assumption 1 guarantees that such Kx

exists and is finite. The mean value theorem guarantees that | (b(y )+v(y )/α)−(b(x)−v(x)/α)
y−x | ≤

Kx.

Note that qf (γc(x)) = x, and that for |�| > 0 small enough, qf (γ) ∈Ux for γ ∈ [γc(x+
|�|), γc(x− |�|)], given that qf and γc are continuous. Then

∫ γc(x)

γc(x+�)

∣∣∣∣w(γ, x+�) −w
(
γ, qf (γ)

)
�

∣∣∣∣dF(γ)

=
∫ γc(x)

γc(x+�)

∣∣∣∣−γ
(
x+�− qf (γ)

)
�

+
(
b(x+�) + v(x+�)/α

) − (
b
(
qf (γ)

) − v
(
qf (γ)

)
/α

)
�

∣∣∣∣dF(γ)

≤
∫ γc(x)

γc(x+�)
γ

∣∣∣∣x+�− qf (γ))

�

∣∣∣∣dF(γ)

+
∫ γc(x)

γc(x+�)

∣∣∣∣
(
b(x+�) + v(x+�)/α

) − (
b
(
qf (γ)

) − v
(
qf (γ)

)
/α

)
x+�− qf (γ)

× x+�− qf (γ)

�

∣∣∣∣dF(γ)

≤
∫ γc(x)

γc(x+�)
γ

∣∣∣∣x+�− qf (γ))

�

∣∣∣∣dF(γ) +
∫ γc(x)

γc(x+�)
Kx

∣∣∣∣x+�− qf (γ)

�

∣∣∣∣dF(γ)

= (γ +Kx )
∫ γc(x)

γc(x+�)

∣∣∣∣x+�− qf (γ)

�

∣∣∣∣dF(γ)

≤ (γ +Kx )
∫ γc(x)

γc(x+�)

∣∣∣∣x+�− x

�

∣∣∣∣dF(γ)

= (γ +Kx )
∫ γc(x)

γc(x+�)
dF(γ)

The steps above are immediate except for the last inequality. For this, we use that if

x < qf (γ), then for all sufficiently small �, qf (γc(x + �)) = x + �. If x = qf (γ), then for

� > 0, the integral range is empty (and thus the integral equals zero). For � < 0, we still

have that qf (γc(x+�)) = x+�.

Now note that the last integral above tends to zero as � goes to zero, and thus, taking

the limit of (8) as �→ 0, we obtain that for x > qf (γ):

dW c(x)
dx

=
∫ γ

γc(x)
wq(γ, x)dF(γ)
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1748 Amador and Bagwell Theoretical Economics 17 (2022)

Note that

dW c(s)
dx

∣∣∣∣
x=qmax

=
∫ γ

γc(qmax )
wq(γ, qmax )dF(γ) <

∫ γ

γ
wq(γ, qmax )dF(γ) = wq(γ, qmax ) < 0

where we use that γc(qmax ) = γ as qmax > qf (γ) and that wq(γ, qmax ) > wq(γ, qmax ) for
γ > γ to show the first inequality. For the last inequality, we use Assumption 1.

Note that wq(γ, qf (γ)) > 0, as v′(q) > 0. Consider x0 > qf (γ) such that wq(γ, x0 ) >
0. Such an x0 exists by continuity of wq. Note that for all q0 ∈ (qf (γ), x0], γc(q0 ) < γ

and wq(γ, q0 ) ≥ wq(γ, x0 ) > 0, by weak concavity of w. It follows that 0 < wq(γ, q0 ) ≤
wq(γ, q0 ) for all γ ∈ [γ, γ]. Hence, for all q0 ∈ (qf (γ), x0] we have that

dW c(s)
dx

∣∣∣∣
x=q0

=
∫ γ

γc(q0 )
wq(γ, q0 )dF(γ) > 0

It follows then that the optimal value of x is interior to (qf (γ), qmax] and must solve
the first-order condition in the lemma.

Appendix C: Proof of Lemma 3

Proof. Recall from Lemma 2 that x > qf (γ) and
∫ γ
γc(x) wq(γ, x)dF(γ) = 0. Using

wqγ(γ, q) = −1 < 0, wq(γ, x) < 0 follows. Next, observe wq(γ, x) = −γ + P(x) +
( 1−α

α )(−P ′(x)x) < 0, and thus P(x) − γ < ( 1−α
α )(P ′(x)x) ≤ 0 given P ′(x) < 0 and α ∈

(0, 1]. Hence, π(γ, x) = (P(x) −γ)x < 0 ≤ σ , and so the IR constraint fails for the highest
type.

Appendix D: Proof of Proposition 1

Proof. We proceed as follows. First, we restate the regulator’s truncated problem by
expressing the incentive compatibility constraints in their standard form as an integral
equation and a monotonicity requirement:35

max
qt :�t (γt )→Q

∫
�t (γt )

(
w

(
γ, qt(γ)

) − σ
)
dF(γ) subject to:

− γqt(γ) + b
(
qt(γ)

) − σ −
∫ γt

γ
qt(γ̃)dγ̃ =U , for all γ ∈ �t(γt )

qt(γ) nonincreasing, for all γ ∈ �t(γt )

0 ≤ −γqt(γ) + b
(
qt(γ)

) − σ , for all γ ∈ �t(γt )

where U ≡ −γtqt(γt ) + b(qt(γt )) − σ is the profit enjoyed by the monopolist with the
highest possible cost type in �t(γt ).

Next, we follow Amador and Bagwell (2013) and rewrite the incentive constraints as a
set of two inequalities and embed the monotonicity constraint in the choice set of qt(γ).

35See, for example, Milgrom and Segal (2002).

 15557561, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/T

E
4691 by C

onricyt Fondo Institucional D
el C

onacyt, W
iley O

nline L
ibrary on [19/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1749

With the choice set for qt(γ) defined as  ≡ {qt|qt : �t(γt ) → Q, and qt nonincreasing},
the regulator’s truncated problem may now be stated in final form as follows:

(P′
t) max

qt∈

∫
�t (γt )

(
w

(
γ, qt(γ)

) − σ
)
dF(γ) subject to:

γqt(γ) − b
(
qt(γ)

) + σ +
∫ γt

γ
qt(γ̃)dγ̃ +U ≤ 0, for all γ ∈ �t(γt ) (9)

−γqt(γ) + b
(
qt(γ)

) − σ −
∫ γt

γ
qt(γ̃)dγ̃ −U ≤ 0, for all γ ∈ �t(γt ) (10)

γqt(γ) − b
(
qt(γ)

) + σ ≤ 0, for all γ ∈ �t(γt ) (11)

Let �1(γ) and �2(γ) denote the (cumulative) multiplier functions associated with the
two inequalities that define the incentive compatibility constraints in the final form of
the regulator’s truncated problem. The multiplier functions �1(γ) and �2(γ) are re-
stricted to be nondecreasing in �t(γt ). Letting �(γ) ≡ �1(γ) − �2(γ), we can write the
Lagrangian of the regulator’s truncated problem as stated in Problem P′

t as follows:

L =
∫
�t

w
(
γ, qt(γ)

)
dF(γ) −

∫
�t

(∫ γt

γ
qt(γ̃)dγ̃ +U + γqt(γ) − b

(
qt(γ)

) + σ

)
d�(γ)

+
∫
�t

(−γqt(γ) + b
(
qt(γ)

) − σ
)
d�(γ),

where without loss of generality we have removed the constant σ in the first integral and
where to save notation we have removed the dependence of �t on γt . Notice that �(γ)
is the multiplier for the ex post participation constraints. �(γ) is also restricted to be
nondecreasing.

We propose the following multipliers:

�(γ) =

⎧⎪⎪⎨⎪⎪⎩
0; γ = γ

wq
(
γ, qf (γ)

)
f (γ); γ ∈ (

γ, γH(γt )
)

A+ κ
(
F(γt ) − F(γ)

)
; γ ∈ [

γH(γt ), γt
]

and

�(γ) =
{

0; γ ∈ [γ, γt )

A; γ = γt

where

A= 1
γt − γH(γt )

[∫ γt

γH (γt )
wq

(
γ, qi(γt )

)
f (γ)dγ + κ

(
γH(γt ) − b′(qi(γt )

))
F(γt )

]
. (12)

Note that while defining �(γ), we allow for the possibility that γH(γt ) = γ, and the
intermediate case in the definition then does not apply. This is the case where there is
full pooling of all types.
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1750 Amador and Bagwell Theoretical Economics 17 (2022)

We show below that the hypothesis of Proposition 1 guarantees that R(γ) ≡ κF(γ) +
�(γ) is nondecreasing; thus, we may write �(γ) as the difference between two nonde-
creasing functions, �1(γ) = R(γ) and �2(γ) = κF(γ).36 We also require that A ≥ 0 as
�(γ) must be nondecreasing. We establish this inequality below.

We note that the cap allocation q�t (γ|γt ) together with the proposed multipliers sat-
isfy complementary slackness. The incentive compatibility constraints bind under the
cap allocation, and �(γ) is constructed to be zero whenever the participation constraint
holds with slack.

When these multipliers are used, the Lagrangian becomes

L =
∫
�t

w
(
γ, qt(γ)

)
dF(γ) −

∫
�t

(∫ γt

γ
qt(γ̃)dγ̃ +U + γqt(γ) − b

(
qt(γ)

) + σ

)
d�(γ)

+ (−γtqt(γt ) + b
(
qt(γt )

) − σ
)
A.

Recalling the definition of U and using �(γ) = 0 and �(γt ) = A, we can then write
the Lagrangian as

L =
∫
�t

w
(
γ, qt(γ)

)
dF(γ) −

∫
�t

(∫ γt

γ
qt(γ̃)dγ̃ + γqt(γ) − b

(
qt(γ)

) + σ

)
d�(γ)

Integrating the Lagrangian by parts, we get37

L =
∫
�t

(
w

(
γ, qt(γ)

)
f (γ) −�(γ)qt(γ)

)
dγ +

∫
�t

(−γqt(γ) + b
(
qt(γ)

) − σ
)
d�(γ) (13)

Let us now consider the concavity of the Lagrangian. Using (13), we may rewrite the
Lagrangian as

L =
∫
�t

(
w

(
γ, qt(γ)

) − κ
(−γqt(γ) + b

(
qt(γ)

) − σ
))
f (γ)dγ −

∫
�t

�(γ)qt(γ)dγ

+
∫
�t

(−γqt(γ) + b
(
qt(γ)

) − σ
)
d
(
κF(γ) +�(γ)

)
From the definition of κ, w(γ, qt(γ)) − κb(qt(γ)) is concave in qt(γ). We may thus con-
clude that the Lagrangian is concave in qt(γ) if

κF(γ) +�(γ)

is nondecreasing for all γ ∈ [γ, γt ]. Using the constructed �(γ) and referring to part (ii)
of Proposition 1, we see that κF(γ)+�(γ) is nondecreasing for all γ ∈ [γ, γt ] if the jumps

36For our analysis, only the difference between �1(γ) and �2(γ) matters, and so we need only show that
there exists two nondecreasing functions, �1(γ) and �2(γ), whose difference delivers �(γ).

37Observe that h(γ) ≡ ∫ γt
γ qt (γ̃)dγ̃ exists (as qt is bounded and measurable by monotonicity) and is

absolutely continuous. Observe as well that �(γ) ≡ �1(γ) − �2(γ) is a function of bounded variation,
as it is the difference between two nondecreasing and bounded functions. We may thus conclude that∫ γt
γ h(γ)d�(γ) exists (it is the Riemman–Stieltjes integral), and integration by parts can be done as follows:∫ γt
γ h(γ)d�(γ) = h(γ)�(γ) − h(γ)�(γ) − ∫ γt

γ �(γ)dh(γ). Given that h(γ) is absolutely continuous, we can

replace dh(γ) with −qt (γ)dγ.
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1751

in �(γ) at γ and γH(γt ) are nonnegative. We verify these jumps are indeed nonnegative
below.

We now show that the cap allocation q�t maximizes the Lagrangian. To this end, we
use the sufficiency part of Lemma A.2 in Amador, Werning, and Angeletos (2006), which
concerns the maximization of concave functionals on a convex cone. In our case, we
need to extend the set Q to be [0, ∞), making our choice set  a convex cone. To do
this, we follow Amador and Bagwell (2013) and extend b and w to the entire nonnegative
ray of the real line. We can then apply Lemma A.2 to the extended Lagrangian with the
choice set ̂≡ {q|q : �t → �+, and q nonincreasing}.

Following the arguments in Amador and Bagwell (2013), we can then establish that
the cap allocation q�t maximizes the Lagrangian if the Lagrangian is concave and the
following first-order conditions hold:

∂L
(
q�t ; q�t

) = 0

∂L
(
q�t ; x

) ≤ 0 for all x ∈,

where ∂L(q�t ; x) is the Gateaux differential of the Lagrangian in (13) in the direction x.38

Importantly, the Lagrangian in (13) is evaluated using our constructed multiplier func-
tions.

Taking the Gateaux differential of the Lagrangian in (13) in direction x ∈, we get39

∂L
(
q�t ; x

) =
∫
�t

(
wq

(
γ, q�t (γ)

)
f (γ) −�(γ)

)
x(γ)dγ

+
∫
�t

(−γ + b′(q�t (γ)
))
x(γ)d�(γ).

Using b′(qf (γ)) = γ and our knowledge of � and �, we get that

∂L
(
q�t ; x

) =
∫ γt

γH (γt )

(
wq

(
γ, qi(γt )

)
f (γ) −A− κ

(
F(γt ) − F(γ)

)
− κ

(
b′(qi(γt )

) − γ
)
f (γ)

)
x(γ)dγ

Hence, integrating by parts, we get

∂L
(
q�t ; x

) =
[∫ γt

γH (γt )

(
wq

(
γ, qi(γt )

)
f (γ) −A− κ

(
F(γt ) − F(γ)

)
− κ

(
b′(qi(γt )

) − γ
)
f (γ)

)
dγ

]
x(γt )

38Given a function T : � → Y , where � ⊂ X and X and Y are normed spaces, if for x ∈ � and h ∈ X the
limit

lim
α↓0

1
α

[
T (x+ αh) − T (x)

]
exists, then it is called the Gateaux differential at x with direction h and is denoted by ∂T (x; h).

39Existence of the Gateaux differential follows from Lemma A.1 in Amador, Werning, and Angeletos
(2006). See Amador and Bagwell (2013) for further details concerning the application of this lemma.
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1752 Amador and Bagwell Theoretical Economics 17 (2022)

−
∫ γt

γH (γt )

[∫ γ

γH (γt )

(
wq

(
γ̃, qi(γt )

)
f (γ̃) −A− κ

(
F(γt ) − F(γ̃)

)
− κ

(
b′(qi(γt )

) − γ̃
)
f (γ̃)

)
dγ̃

]
dx(γ)

Now, we use
∫ a
b {(F(c) −F(x)) + (d − x)f (x)}dx = (a− b)(F(c) −F(a)) + (d − b)(F(a) −

F(b)) to get that

∂L
(
q�t ; x

) =
[∫ γt

γH (γt )
wq

(
γ, qi(γt )

)
f (γ)dγ − (

γt − γH(γt )
)
A

− κ
(
b′(qi(γt )

) − γH(γt )
)(
F(γt ) − F

(
γH(γt )

))]
x(γt )

−
∫ γt

γH (γt )

[∫ γ

γH (γt )
wq

(
γ̃, qi(γt )

)
f (γ̃)dγ̃ − (

γ − γH(γt )
)
A

− κ
((
γ − γH(γt )

)(
F(γt ) − F(γ)

)
+ (

b′(qi(γt )
) − γH(γt )

)(
F(γ) − F

(
γH(γt )

)))]
dx(γ).

Given that (b′(qi(γt ))−γH(γt ))F(γH(γt )) = 0, as γH(γt ) < γt and b′(qi(γt )) = γH(γt )
if γH(γt ) ∈ (γ, γ), the above becomes

∂L
(
q�t ; x

) =
[∫ γt

γH (γt )
wq

(
γ, qi(γt )

)
f (γ)dγ − (

γt − γH(γt )
)
A

+ κ
(
γH(γt ) − b′(qi(γt )

))
F(γt )

]
x(γt )

−
∫ γt

γH (γt )

[∫ γ

γH (γt )
wq

(
γ̃, qi(γt )

)
f (γ̃)dγ̃ − (

γ − γH(γt )
)
A

− κ
(
γ − γH(γt )

)
F(γt ) + κ

(
γ − b′(qi(γt )

))
F(γ)

]
dx(γ).

Using the definition of G in equation (5), we can rewrite the above as

∂L
(
q�t ; x

) = (
G(γt|γt ) −A

)(
γt − γH(γt )

)
x(γt )

−
∫ γt

γH (γt )

(
G(γ|γt ) −A

)(
γ − γH(γt )

)
dx(γ).

Using (5) and (12), we also observe that

G(γt|γt ) =A, (14)

and thus

∂L
(
q�t ; x

) = −
∫ γt

γH (γt )

(
G(γ|γt ) −A

)(
γ − γH(γt )

)
dx(γ). (15)

We are now ready to evaluate the first-order conditions.
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1753

Note that it follows immediately that ∂L(q�t ; q�t ) = 0 as q�t is constant for γ ∈
[γH(γt ), γt ].

If G(γ|γt ) ≤A=G(γt|γt ) for all γ ∈ [γH(γt ), γt ], then for any nonincreasing x ∈, it
follows that ∂L(q�t ; x) ≤ 0, which is provided by part (i) of Proposition 1.

Recall also that we require A≥ 0, since �(γ) must be nondecreasing. To see that this
inequality holds, note that

A= κ

[
γH(γt ) − b′(qi(γt )

)
γt − γH(γt )

]
F(γt ) + 1

γt − γH(γt )

∫ γt

γH (γt )
wq

(
γ̃, qi(γt )

)
f (γ̃)dγ̃.

By the definition of γH , we have that qi(γt ) ≥ qf (γH(γt )). Note also that b′(qf (γH(γt ))) =
γH(γt ), and concavity of b implies that b′(qi(γt )) ≤ b′(qf (γH(γt ))) = γH(γt ). So, the first
term in the previous equation is nonnegative. Finally, note that wq(γ, q) = P(q) − γ +
P ′(q)q+ 1

αv
′(q) = P(q) − γ − 1−α

α qP ′(q). Thus,

wq
(
γt , qi(γt )

) = P
(
qi(γt )

) − γt − 1 − α

α
qi(γt )P ′(qi(γt )

)
= σ

qi(γt )
− 1 − α

α
qi(γt )P ′(qi(γt )

) ≥ 0

where the last equality follows from (P(qi(γt )) − γt )qi(γt ) = σ , by the definition of qi.
But we also have that

wq(γ, q) >wq
(
γ′, q

)
for all γ < γ′, and thus

wq
(
γ, qi(γt )

) ≥wq
(
γt , qi(γt )

) ≥ 0

for γ ≤ γt . Hence, we can also sign the integral term:
∫ γt
γH (γt ) wq(γ̃, qi(γt ))f (γ̃)dγ̃ ≥ 0.

Taken together, the above implies that A≥ 0.
As discussed above, we now finish the argument that κF(γ) +�(γ) is nondecreasing

for all γ ∈ [γ, γ] by showing that the potential jumps in �(γ) are nonnegative. There are
two cases to consider. The first case is where γH(γt ) > γ. In this case, there are two
jumps, one at γ and one at γH(γt ). For the jump at γH(γt ), we get

A+ κ
(
F(γt ) − F

(
γH(γt )

)) −wq(γH(γt ), qf
(
γH(γt )

)
f
(
γH(γt )

) = G(γt|γt ) −G
(
γH(γt )|γt

)
where G(γH(γt )|γt ) = −κ[F(γt )−F(γH(γt ))]+wq(γH(γt ), qf (γH(γt ))f (γH(γt )). Part (i)
of Proposition 1 guarantees that G(γt|γt ) ≥ G(γH(γt )|γt ), and thus the jump at γH(γt )
is nonnegative.

The jump in �(γ) at γ is nonnegative, since wq(γ, qf (γ))f (γ) > 0.
Finally, for the case where γH(γt ) = γ, there is only one jump, at γ. The jump is

A+ κF(γt )

which is positive, given that we have shown that A≥ 0.
To complete the proof, we use Theorem 1 in Amador and Bagwell (2013). To ap-

ply this theorem, we set (i) x0 ≡ q�t ; (ii) X ≡ {qt|qt : �t → Q}; (iii) f to be given by
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1754 Amador and Bagwell Theoretical Economics 17 (2022)

the negative of the objective function,
∫
�t
w(γ, qt(γ))dF(γ), as a function of qt ∈ X ;

(iv) Z ≡ {(z1, z2, z3 )|z1 : �t → R, z2 : �t → R and z3 : �t → R with z1, z2, z3 integrable };
(v) � ≡ ; (vi) P ≡ {(z1, z2, z3 )|(z1, z2, z3 ) ∈ Z such that z1(γ) ≥ 0, z2(γ) ≥ 0 and z3(γ) ≥
0 for all γ ∈ �t }; (vii) Ĝ (which is referred to as G in Theorem 1) to be the mapping from
 to Z given by the left-hand sides of inequalities (9), (10), and (11); (viii) T to be the
linear mapping:

T
(
(z1, z2, z3 )

) ≡
∫
�t

z1(γ)d�1(γ) +
∫
�t

z2(γ)d�2(γ) +
∫
�t

z3(γ)d�(γ)

where �1, �2, and � being nondecreasing functions implies that T (z) ≥ 0 for z ∈ P . We
have that

T
(
Ĝ(x0 )

) ≡
∫
�t

(∫ γt

γ
q�t (γ̃)dγ̃ +U + γq�t (γ) − b

(
q�t (γ)

) + σ

)
d
(
�1(γ) −�2(γ)

)
−

∫
�t

(−γq�t (γ) + b
(
q�t (γ)

) − σ
)
d�(γ) = 0

where U is evaluated at the q�t allocation, and where the last equality follows from the
q�t allocation and the proposed multipliers. We have found conditions under which the
proposed allocation, q�t , minimizes f (x) + T (Ĝ(x)) for x ∈ �. Given that T (Ĝ(x0 )) = 0,
then the conditions of Theorem 1 hold and it follows that q�t solves minx∈� f (x) subject
to −Ĝ(x) ∈ P , which is Problem P′

t .

D.1 Proof of Corollary 1

Proof. Letting qi and γH represent qi(γt ) and γH(γt ), respectively, we start with the
following manipulations:

G(γ|γt ) = −κF(γt ) + κ
γ − b′(qi )
γ − γH

F(γ) + 1
γ − γH

∫ γ

γH

(
−γ̃ + b′(qi ) + 1

α
v′(qi )

)
f (γ̃)dγ̃

= −κF(γt ) + κ
γ

γ − γH
F(γ) − κ

b′(qi )
γ − γH

F(γ)

+ κ
b′(qi )
γ − γH

F(γH ) − κ
b′(qi )
γ − γH

F(γH )

+ 1
γ − γH

∫ γ

γH

(
−γ̃ + b′(qi ) + 1

α
v′(qi )

)
f (γ̃)dγ̃

= −κF(γt ) + κ

γ − γH

∫ γ

γH

(
γ̃f (γ̃) + F(γ̃)

)
dγ̃ − κ

b′(qi )
γ − γH

(
F(γ) − F(γH )

)
+ 1

γ − γH

∫ γ

γH

(
−γ̃ + b′(qi ) + 1

α
v′(qi )

)
f (γ̃)dγ̃

= −κF(γt ) + κ

γ − γH

∫ γ

γH

(
γ̃f (γ̃) + F(γ̃) − b′(qi )f (γ̃)

)
dγ̃
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1755

+ 1
γ − γH

∫ γ

γH

(
−γ̃ + b′(qi ) + 1

α
v′(qi )

)
f (γ̃)dγ̃

= −κF(γt ) + 1
γ − γH

∫ γ

γH

[
κF(γ̃) + 1

α
v′(qi )f (γ̃) + (κ− 1)

(
γ̃ − b′(qi )

)
f (γ̃)

]
dγ̃

= −κF(γt ) + 1
γ − γH

∫ γ

γH

M2(γ̃)dγ̃,

where we use in the third equality above that γH−b′(qi )
γ−γH

F(γH ) = 0 and where we define

M2(γ̃) ≡ κF(γ̃) + 1
α
v′(qi )f (γ̃) + (κ− 1)

(
γ̃ − b′(qi )

)
f (γ̃).

Thus,

(γ − γH )G(γ|γt ) = −κ(γ − γH )F(γt ) +
∫ γ

γH

M2(γ̃)dγ̃.

Taking a derivative with respect to γ, for γ > γH , we obtain

(γ − γH )G′(γ|γt ) +G(γ|γt ) = −κF(γt ) +M2(γ),

and thus

(γ − γH )G′(γ|γt ) =M2(γ) − 1
γ − γH

∫ γ

γH

M2(γ̃)dγ̃.

It follows that, if M ′
2(γ) ≥ 0, then G′(γ|γt ) ≥ 0. Now note that

M ′
2(γ) = κf (γ) + 1

α
v′(qi )f ′(γ) + (κ− 1)

(
γ − b′(qi )

)
f ′(γ) + (κ− 1)f (γ)

= (2κ− 1)f (γ) + κ
(
γ − b′(qi )

)
f ′(γ) + (−γ + b′(qi ) + v′(qi )/α

)
f ′(γ).

Recall that

γ − b′(qi ) ≥ 0

for γ ≥ γH . In addition,

−γ + b′(qi ) + v′(qi )/α = −γ + b′(qi ) + v′(qi ) +
(

1
α

− 1
)
v′(qi )

= (
P(qi ) − γ

) +
(

1
α

− 1
)
v′(qi ) ≥ 0 for γ ≥ γH

where we use that b′(qi )+v′(qi ) = P(qi ) and where the inequality follows from v′(qi ) > 0,
α ∈ (0, 1], and that P(qi ) ≥ γ for all types in [γH , γt ] (so that they can make profits and
cover the fixed cost σ ≥ 0). Hence,

M ′
2(γ) = (2κ− 1)f (γ) + κ(nonnegative term)f ′(γ) + (nonnegative term)f ′(γ).
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1756 Amador and Bagwell Theoretical Economics 17 (2022)

Thus, κ≥ 1/2 and f ′(γ) ≥ 0 together are sufficient to guarantee that M ′
2(γ) ≥ 0, and thus

that G(γ|γt ) is nondecreasing for any γt . Hence, part (i) of Proposition 1 then holds for
all γt ∈ (γ, γ].

Finally, note that

M ′
1(γ) = κf (γ) + 1

α
v′′(qf (γ)

)
q′
f (γ)f (γ) + 1

α
v′(qf (γ)

)
f ′(γ).

Using q′
f (γ) = 1/b′′(qf (γ)) and the definition of κ, we obtain that

M ′
1(γ) ≥ (2κ− 1)f (γ) + 1

α
v′(qf (γ)

)
f ′(γ) ≥ 0

where the second inequality follows from κ ≥ 1/2 and f nondecreasing. Thus, part (ii)
of Proposition 1 also holds for all γt ∈ (γt , γ]. We can thus use Proposition 2 to obtain
the desired result.

D.2 Proof of Lemma 4

Proof. For parts (a) and (b), recall that v′(q) = −P ′(q)q and that b′(q) = P(q) + qP ′(q).
Using equation (6), it follows that, for all q ∈ (0, qmax],

−v′(q) = a0
(
b′(q) + v′(q)

) + b0

v′(q) = − a0

1 + a0
b′(q) − b0

1 + a0

(16)

Integrating the above in [q0, q] where q > q0 > 0, we have that

v(q) + a0

1 + a0
b(q) + b0

1 + a0
q = v(q0 ) + a0

1 + a0
b(q0 ) + b0

1 + a0
q0

From Assumption 1, using the limit condition limq0↓0 v(q0 ) = limq0↓0 b(q0 ) = 0, we get
part (a) for all q ∈ Q.

Differentiating (16), we get that 1
α
v′′(q)
b′′(q) = − 1

α
a0

1+a0
, and thus part (b) follows.

To show part (c), note that

wq
(
γ, qf (γ)

) = 1
α
v′(qf (γ)

) = − 1
α

a0

1 + a0
b′(qf (γ)

) − 1
α

b0

1 + a0

= − 1
α

a0

1 + a0︸ ︷︷ ︸
κ−1

(
b′(qf (γ)

)︸ ︷︷ ︸
γ

−b′(qi )
) − 1

α

[
a0

1 + a0
b′(qi ) − b0

1 + a0︸ ︷︷ ︸
−v′(qi )

]

= (κ− 1)
(
γ − b′(qi )

) + 1
α
v′(qi )

It follows then that

M1(γ) = κF(γ) +wq
(
γ, qf (γ)

)
f (γ)

= κF(γ) + (κ− 1)
(
γ − b′(qi )

)
f (γ) + 1

α
v′(qi )f (γ) =M2(γ)

which with qi = qi(γt ) delivers part (c).
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Theoretical Economics 17 (2022) Regulating a monopolist with uncertain costs 1757

D.3 Proof of Corollary 2

Proof. For this family, we already know that if part (ii) of Proposition 1 holds globally,
then so does part (i). Taking a derivative of M1(γ) with respect to γ, and using that

wq(γ, qf (γ)) = 1
αv

′(qf (γ)) together with
dv′(qf (γ))

dγ = v′′(qf (γ))
b′′(qf (γ)) delivers the result.

D.4 Proof of Lemma 5

Proof. By (3), qi(γt ) satisfies γt = P(qi(γt )) − σ
qi(γt ) . It follows that

q′
i(γt ) = 1

P ′(qi(γt )
) + σ/

(
qi(γt )

)2

Given that qi(γt ) > qf (γt ), it follows that πq(γt , qi(γt )) < 0. Hence, πq(γt , qi(γt )) =
P ′(qi(γt ))qi(γt ) + π(γt , qi(γt ))/qi(γt ) < 0. Using that π(γt , qi(γt )) = σ , we obtain the
first result of the lemma.

For the second result, there are two cases to consider, one where γH(γt ) > γ and the
other where γH(γt ) = γ. For the latter case, the result is immediate. For the former case,
we have that γH(γt ) = b′(qf (γH(γt ))) = b′(qi(γt )) = P ′(qi(γt ))qi(γt ) + P(qi(γt )). Thus,

γt − γH(γt ) = −
(

σ

qi(γt )
+ P ′(qi(γt )

)
qi(γt )

)
The first result of the lemma establishes that the bracketed expression is negative; thus,
it follows that γt > γH(γt ).

Appendix E: Proof of Proposition 4

Proof. First, note that q′
i(γt ) < 0 implies that γH(γt ) is strictly increasing in γt , as long

as γH(γt ) > γ. That is, there exists a γ̂ ∈ (γ, γ] such that γH(γt ) = γ for all γt ≤ γ̂ and
γH(γt ) > γ for all γt > γ̂. It is possible that γ̂ = γ, and thus for any level of exclusion, all
types are pooled.

Consider a situation where γ̂ < γ. Then, for γt ∈ (γ̂, γ], using the functional forms,
α = 1, the uniform distribution assumption, and that b′(qi(γt )) = γH(γt ), we have that

W ′(γt )/fU = v
(
qi(γt )

) − v′(qi(γt )
)
qi(γt ) + qi(γt )

γt − γH(γt )

∫ γt

γH (γt )

(
γ − γH(γt )

)
dγ

= −βqi(γt )2/2 − qi(γt )γH(γt ) + qi(γt )

2
(
γt − γH(γt )

)(
γ2
t − γH(γt )2)

= qi(γt )
2

[−βqi(γt ) + γt − γH(γt )
]

where fU = 1
γ−γ denotes the uniform density.

Using that γt − γH(γt ) = − σ
qi(γt ) + βqi(γt ), we obtain that W ′(γt )/fU = −1

2σ < 0.
Thus, for all γt ∈ (γ̂, γ], W ′(γt ) < 0, and thus, in an optimal allocation γt ≤ γ̂, guaran-
teeing that all types are pooled. This completes the proof of part (a).

 15557561, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/T

E
4691 by C

onricyt Fondo Institucional D
el C

onacyt, W
iley O

nline L
ibrary on [19/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1758 Amador and Bagwell Theoretical Economics 17 (2022)

For part (b), note that the conditions imply that γ̂ < γ. To see this, note that if γt = γ,
then qi(γt ) = qi(γ) < qf (γ) under the conditions in part (b). There then exists γ0 > γ

such that qf (γ0 ) = qi(γt ), from which it follows that γH(γt ) = γ0 > γ, a contradiction to
part (a). Given that γt ≤ γ̂ < γ, part (a) implies that some types will be excluded.

For the case where γt < γ̂, then γH(γt ) = γ, and

W ′(γt )/fU = −1
2

(
σ − (μ− γ)

(
μ− γ − 2βqi(γt )

)(
qi(γt )

)2

σ −β
(
qi(γt )

)2

)
.

Note that

lim
γt→γ

W ′(γt )/fU = −1
2

(
σ − (μ− γ)

(
μ− γ − 2βqi(γ)

)(
qi(γ)

)2

σ −β
(
qi(γ)

)2

)
.

By definition of qi, we have that (μ−βqi(γ) − γ)qi(γ) = σ . Using this, we get(
μ− γ − 2βqi(γ)

)
qi(γ) = σ −β

(
qi(γ)

)2
,

and thus

lim
γt→γ

W ′(γt )/fU = −1
2

(
σ − (μ− γ)

(
μ− γ − 2βqi(γ)

)(
qi(γ)

)2

σ −β
(
qi(γ)

)2

)
= −1

2

(
σ − (μ− γ)qi(γ)

)
= −1

2

((
μ−βqi(γ) − γ

)
qi(γ) − (μ− γ)qi(γ)

) = 1
2
βqi(γ)2 > 0.

We have already shown that W ′(γ) < 0 for γ ∈ (γ̂, γ]. Together with the above limiting
result, and that W ′ is continuous at γ̂ (see footnote 31), it follows that the optimal γt is
interior in [γ, γ̂], and thus satisfies W ′(γt ) = 0.
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