Foreign Reserve Management

Manuel Amador¹ Javier Bianchi² Luigi Bocola³ Fabrizio Perri⁴

¹Minneapolis Fed, University of Minnesota

²Minneapolis Fed

³Stanford University

⁴Minneapolis Fed

December 11, 2019

The views here do not necessarily represent the views of the Federal Reserve Bank of Minneapolis nor the Federal Reserve System.

Foreign reserves and exchange rates

- A Central Bank (CB) sets an exchange rate and interest policy that makes domestic assets attractive.
 - \Rightarrow Capital flows in.
- ▶ The CB has a problem if:
 - Domestic interest rates cannot fall to restore equilibrium.
- One option:
 - Accumulate foreign assets and reverse the inflow.
- And this can work, in a world with limited arbitrage.
 - Focus of our previous work (ABBP 19)

Foreign reserve management

- ▶ CB needs to decide how to invest the accumulate assets.
- Standard answer (Backus Kehoe, 89)
 - ▶ with perfect international arbitrage: it does not matter
- ▶ Our take: with imperfect international arbitrage, it does.

Foreign reserve management

With imperfect international arbitrage

- ▶ CB buys/sells foreign reserves and affects prices
- But doing so involves costs
 - ... arbitrage losses to foreigners

Results

- Portfolio of foreign reserves determines losses.
- Optimal portfolio depends on openness to capital flows.

Framework

▶ Two-period model (similar to *Backus-Kehoe*, 89)

- Small open economy (government + households)
- International Financial Market
- International Arbitrageurs
- Time $t \in \{1, 2\}$
- Uncertainty realized at t = 2, $s \in S \equiv \{s_1, ..., s_N\}$
- Probability $\pi(s) \in (0, 1]$
- One good no production
- Law of one price foreign price normalized to 1

Asset markets: complete but segmented

International financial market

- ▶ Full set of Arrow-Debreu (real) securities:
 - Security s: 1 unit of consumption good only in state s
 - Price q(s) in terms of goods at t = 1

Domestic financial market

- ▶ Full set of Arrow-Debreu (nominal) securities:
 - Security s: 1 unit of domestic currency only in state s
 - Price p(s) in terms of domestic currency at t = 1

Asset markets: complete but segmented

Foreign intermediaries

 Trade securities with SOE & IFM .. but have limited capital

Model: Small open economy

• Endowment: $(y_1, \{y_2(s)\})$, transfers: $\{T_2(s)\})$

$$\begin{split} \max_{c_1, \{c_2, a, f\}} & \left\{ u(c_1) + \beta \sum_{s \in S} \pi(s) u(c_2(s)) \right\} \\ y_1 &= c_1 + \sum_{s \in S} \left[q(s) f(s) + p(s) \frac{a(s)}{e_1} \right] \\ y_2(s) + T_2(s) + f(s) + \frac{a(s)}{e_2(s)} = c_2(s) \quad \forall s \in S \\ f(s) &\geq 0 \quad \forall s \in S \end{split}$$

 e_1 , $e_2(s)$: exchange rates at t = 1 and t = 2f(s), a(s): holdings of foreign and domestic security s m: money holdings, \overline{x} : satiation point of h

Model: Foreign intermediaries

• Endowed with capital \overline{w}

$$\begin{aligned} \max_{d_1, \{d_2, a^\star, f^\star\}} d_1^\star + \sum_{s \in S} \pi(s) \Lambda(s) d_2^\star(s) \\ \text{subject to:} \\ \overline{w} &= d_1^\star + \sum_{s \in S} p(s) \frac{a^\star(s)}{e_1} + \sum_{s \in S} q(s) f^\star(s) \\ d_2^\star(s) &= \frac{a^\star(s)}{e_2(s)} + f^\star(s) \\ a^\star(s) &\ge 0, f^\star(s) \ge 0 \end{aligned}$$

Consider $\Lambda(s) = \frac{q(s)}{\pi(s)}$ (same SDF as IFM)

Model: Central Bank

- Amounts invested at home and abroad, A(s) and F(s); and transfers {T₂(s)}.
- Budget constraint:

$$\sum_{s} p(s) \frac{A(s)}{e_1} + \sum_{s} q(s)F(s) = 0$$
$$T_2(s) = \frac{A(s)}{e_2(s)} + F(s) \quad \forall s \in S$$

Model: Central Bank

Monetary policy objective: $\{i, e_1, e_2(s)\}$; where

$$1 + i = \frac{1}{\sum_{s \in S} p(s)}$$
(NIRC)

Nominal interest rate link to the prices individual securities
Note that i = 0 (ZLB)

Model: Central Bank

Monetary policy objective: $\{i, e_1, e_2(s)\}$; where

$$1 + i = \frac{1}{\sum_{s \in S} p(s)}$$
(NIRC)

Nominal interest rate link to the prices individual securities
Note that i = 0 (ZLB)

Can the CB achieve the objective? Are there costs? Are the costs affected by the CB balance sheet?

Equilibrium definition

Equilibrium given policy objective

HH's consumption, $(c_1, \{c_2(s)\})$, and asset positions, $\{a(s), f(s)\}$; foreign intermediaries dividend policy, $(d_1^{\star}, \{d_2^{\star}(s)\})$, and asset positions $(\{a^{\star}(s), f^{\star}(s)\})$; government transfers $\{T_2(s)\}$, asset $\{A(s), F(s)\}$; such that

- 1. HH and intermediaries maximize taking prices as given,
- 2. the government budget constraint holds, and
- 3. the domestic financial markets clear:

$$a(s) + a^{\star}(s) + A(s) = 0 \quad \forall s \in S$$

Government objective

- ▶ Government desires to implement (i, e₁, {e₂(s)}) this is given.
- Chooses policy {A(s), F(s)} and {T₂(s)} as to implement the equilibrium that maximizes household welfare.
 - optimal equilibrium / optimal equilibrium allocation.

Government objective

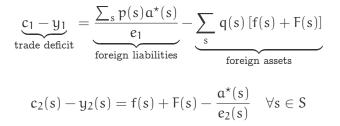
- ▶ Government desires to implement (i, e₁, {e₂(s)}) this is given.
- Chooses policy {A(s), F(s)} and {T₂(s)} as to implement the equilibrium that maximizes household welfare.
 - optimal equilibrium / optimal equilibrium allocation.

▶ For the rest of the talk: no income in the second period:

$$y_1(s) = 0$$
 for all s

Preliminary: Trade deficit

▶ Trade deficits and net foreign assets:



Preliminary: First best (real) allocation

First best (real) allocation, $(c_1^{fb}, \{c_2^{fb}(s)\})$:

$$\max_{\substack{(c_1, \{c_2(s)\}\}}} \left\{ u(c_1) + \beta \sum_{s \in S} \pi(s) u(c_2(s)) \right\}$$

s.t.: $y_1 - c_1 + \sum_{s \in S} q(s) (y_2(s) - c_2(s)) = 0$

The capital of the intermediaries is irrelevant.

There is always a monetary policy objective s.t. FB is eqm.

► Arbitrage return for security s:

$$\kappa(s) \equiv \frac{\frac{e_1}{e_2 p(s)}}{\frac{1}{q(s)}} - 1 \tag{1}$$

► Arbitrage return for security s:

$$\kappa(s) \equiv \frac{\frac{e_1}{e_2 p(s)}}{\frac{1}{q(s)}} - 1 \tag{1}$$

▶ Using the HH's FOC

$$u'(c_0) = \beta \pi(s) \frac{e_1}{e_2(s)p(s)} u'(c_2(s))$$

► Arbitrage return for security s:

$$\kappa(s) \equiv \frac{\frac{e_1}{e_2 p(s)}}{\frac{1}{q(s)}} - 1 \tag{1}$$

▶ Using the HH's FOC

$$u'(c_0) = \beta \pi(s) \frac{e_1}{e_2(s)p(s)} u'(c_2(s))$$

we get

$$\kappa(s) = \frac{q(s)u'(c_1)}{\beta\pi(s)u'(c_2(s))} - 1$$

- $\kappa(s) = 0$: security s: same real return in all markets
- $\kappa(s) > 0$: security s: higher return at home than abroad
- $\blacktriangleright \ \kappa(s) < 0:$ security s: higher return at abroad than home

(One direction arbitrages). In any equilibrium,

$$0 \le \kappa(s) \quad \forall s \in S$$

and f(s) = 0 if strict.

 \Rightarrow return on domestic securities weakly higher than for eign.

Resource losses

Using the HH and CB budget constraints, plus market clearing,

$$y_1 - c_1 + \sum_{s \in S} q(s)(y_2(s) - c_2(s))$$

L: Potential "arbitrage losses"

Resource losses

Using the HH and CB budget constraints, plus market clearing,

$$y_1 - c_1 + \sum_{s \in S} q(s)(y_2(s) - c_2(s)) - \underbrace{\left(\sum_{s \in S} \kappa(s) \frac{p(s)a^*(s)}{e_1}\right)}_{L} = 0$$

L: Potential "arbitrage losses"

Intermediaries profits

In any equilibrium, $\{a^{\star}(s)\}$ solves

$$\begin{split} L = \max_{\{a^{\star}(s)\}} &\left\{ \sum_{s \in S} \kappa(s) \frac{p(s)a^{\star}(s)}{e_1} \right\} \text{ subject to} \\ &\left. \sum_{s \in S} \frac{p(s)a^{\star}(s)}{e_1} \leq \bar{w} \right. \\ &\left. \frac{a^{\star}(s)}{e_2(s)} \geq 0 \text{ for all } s \in S \end{split}$$

The present value of intermediaries dividends is $\Pi = \overline{w} + L$. Note: intermediaries invest in the highest κ security

Intermediaries profits

$$L = \overline{\kappa} + \overline{w}$$

where
$$\overline{\kappa} = \max_{s \in S} \kappa(s)$$

Arbitraging the bonds

Consider (risk-adjusted) return differential on the bonds:

$$\Delta(\mathfrak{i}) = \mathbb{E}\left[\Lambda(\mathfrak{s})\left(\frac{e_1}{e_2(\mathfrak{s})}(1+\mathfrak{i}) - (1+\mathfrak{i}^*)\right)\right]$$

- $\blacktriangleright \ \kappa(s) \ge 0 \ \text{for all} \ s \in S \ \text{implies} \ \Delta(\mathfrak{i}) \ge 0.$
- ▶ $\Delta(i) > 0$ then $\kappa(s) \ge \Delta(i)$ for some $s \in S$

• $L \ge \Delta(i)\overline{w}$

Implementability

 $(c_1, \{c_2(s)\})$ is part of an equilibrium if and only if

$$\begin{split} \kappa(s) &\geq 0; \text{ for all } s \in S \\ \sum_{s \in S} \frac{q(s)}{1 + \kappa(s)} \frac{e_1}{e_2(s)} = (1 + i)^{-1} \\ y_1 - c_1 + \sum_{s \in S} q(s) \left[y_2(s) - c_2(s) \right] = \overline{\kappa} \times \overline{w} \end{split}$$

Equal gaps allocations

- Consider allocations such that all securities are distorted equally: κ(s) = κ for all s ∈ S
- Arbitrage gap is the same for all securities (and thus for any portfolio):

$$\overline{\kappa} = \Delta(\mathfrak{i})$$

• Associated $(c_1, \{c_2(s)\})$ is

$$u'(c_1)q(s) = \beta(1+\bar{\kappa})\pi(s)u'(c_2(s)) \ \forall s$$
$$y_1 - c_1 + \sum_{s \in S} q(s)(y_2(s) - c_2(s)) = \bar{\kappa} \times \bar{w}$$

▶ First best is a special case.

Equal gaps always a choice

For a given monetary policy objective, either (i) the set of implementable allocations is empty or (ii) the equal gap allocation with $\kappa(s) = \Delta(i)$ for all s is implementable.

Equal gaps always a choice

For a given monetary policy objective, either (i) the set of implementable allocations is empty or (ii) the equal gap allocation with $\kappa(s) = \Delta(i)$ for all s is implementable.

- ▶ Only objectives with $\Delta(i) \ge 0$ are implementable
- ▶ $\Delta(i) = 0 \Rightarrow$ first best allocation is implementable
- y₁ + ∑_s y₂(s) > ∆(i) w and Inada ⇒ the set of implementable allocations is non-empty.
- Equal gaps minimizes the losses, L, among all implementable allocations.

$\Delta(\mathfrak{i})=0$

- ▶ The first best allocation is the only equilibrium allocation
- \overline{w} is sufficiently large:
 - \Rightarrow F(s) = 0 for all s \in S optimal
 - A neighborhood of F(s) = 0 is also optimal
- Backus-Kehoe benchmark: perfect capital mobility and irrelevance of CB's balance sheet.

$\Delta(i) > 0$: A relaxed problem

Relax NIRC, and let $\overline{\kappa}_0$ a gap upper bound:

$$\begin{split} \hat{V}(\overline{\kappa}_{0}) &= \max_{(c_{1}, \{c_{2}(s)\}} \left\{ u(c_{1}) + \beta \sum_{s \in S} \pi(s) u(c_{2}(s)) \right\} \text{ s. t.} \\ y_{1} - c_{1} + \sum_{s \in S} q(s) (y_{2}(s) - c_{2}(s)) &= \overline{\kappa}_{0} \overline{w} \\ \sum_{s \in S} \frac{\beta \pi(s) e_{1} u'(c_{2}(s))}{e_{2}(s) u'(c_{1})} &\leq \frac{1}{1+i} \\ 1 &\leq \frac{q(s) u'(c_{1})}{\beta \pi(s) u'(c_{2}(s))} \leq 1 + \overline{\kappa}_{0} \text{ for all } s \in S \end{split}$$

Optimal allocation:

$$\overline{\kappa} = \arg \max_{\overline{\kappa}_0 \geq \Delta(\mathfrak{i})} \hat{V}(\kappa_0)$$

A potential trade-off

- ▶ Higher $\overline{\kappa}_0$ increases losses
- ▶ Higher $\overline{\kappa}_0$ relaxes the NIRC constraint

Goals not necessarily aligned \Rightarrow trade-off depends on \overline{w}

$$\sum_{s \in S} \frac{\beta \pi(s) e_1 u'(c_2(s))}{e_2(s) u'(c_1)} \leq \frac{1}{1+i}$$

$$\sum_{s \in S} \frac{\beta \pi(s) e_1 u'(c_2(s))}{e_2(s) u'(c_1)} \leq \frac{1}{1+i}$$

Result: Suppose that $\pi(s)/q(s)$ is constant and u is DARA. Then $\kappa(s)$ is (weakly) decreasing in $e_2(s)$.

• When $e_2(s)$ is low (appreciation) \Rightarrow increase $c_2(s)$ ($\kappa(s)$).

$$\sum_{s \in S} \frac{\beta \pi(s) e_1 u'(c_2(s))}{e_2(s) u'(c_1)} \leq \frac{1}{1+i}$$

Result: Suppose that $\pi(s)/q(s)$ is constant and u is DARA. Then $\kappa(s)$ is (weakly) decreasing in $e_2(s)$.

- When $e_2(s)$ is low (appreciation) \Rightarrow increase $c_2(s)$ ($\kappa(s)$).
- ▶ Dispersion in $\kappa(s)$ increases losses proportional to \overline{w}

$$\sum_{s \in S} \frac{\beta \pi(s) e_1 u'(c_2(s))}{e_2(s) u'(c_1)} \leq \frac{1}{1+i}$$

Result: Suppose that $\pi(s)/q(s)$ is constant and u is DARA. Then $\kappa(s)$ is (weakly) decreasing in $e_2(s)$.

- When $e_2(s)$ is low (appreciation) \Rightarrow increase $c_2(s)$ ($\kappa(s)$).
- ▶ Dispersion in $\kappa(s)$ increases losses proportional to \overline{w}

Result: When \overline{w} is large \Rightarrow equal gaps is optimal.

Reserve Management

Suppose that $y_2(s)$ is constant.

▶ For all $\kappa(s_1) < \overline{\kappa}$:

$$c_2(s_1) = y_2(s_1) + F(s_1)$$

(there are no private flows, CB has to do the trades)

• Let
$$\overline{S} \subset S$$
 s.t. $\kappa(s) = \overline{\kappa}$:

$$\sum_{s \in \overline{S}} q(s) (c_2(s_1) - y_2(s_1)) + (1 + \overline{\kappa})\overline{w} = \sum_{s \in S} q(s)F(s_1)$$

Reserve Management

Suppose that $y_2(s)$ is constant.

If equal gaps is optimal, then it suffices to invest everything in a risk-free foreign security.

Conclusion

• Optimal portfolio hinges on degree of openness (\overline{w})

- Relatively closed economies:
 - Invest in foreign assets that pay when the currency appreciates
- Relatively open economies:
 - Invest in safe foreign assets
- CB can affect all domestic security prices by intervening
 ... and not just the nominal risk-free bond.
- ▶ More instruments is better!
- But the more open the economy is the more costly it is to use them.