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Foreign reserves and exchange rates

I A Central Bank (CB) sets an exchange rate and interest

policy that makes domestic assets attractive.

⇒ Capital flows in.

I The CB has a problem if:

I Domestic interest rates cannot fall to restore equilibrium.

I One option:
I Accumulate foreign assets and reverse the inflow.

I And this can work, in a world with limited arbitrage.

I Focus of our previous work (ABBP 19)
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Foreign reserve management

I CB needs to decide how to invest the accumulate assets.

I Standard answer (Backus Kehoe, 89)
I with perfect international arbitrage: it does not matter

I Our take: with imperfect international arbitrage, it does.
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Foreign reserve management

With imperfect international arbitrage

I CB buys/sells foreign reserves and affects prices

I But doing so involves costs

... arbitrage losses to foreigners

Results

I Portfolio of foreign reserves determines losses.

I Optimal portfolio depends on openness to capital flows.
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Framework

I Two-period model (similar to Backus-Kehoe, 89)
I Small open economy (government + households)
I International Financial Market
I International Arbitrageurs

I Time t ∈ {1, 2}

I Uncertainty realized at t = 2, s ∈ S ≡ {s1, ..., sN}

I Probability π(s) ∈ (0, 1]

I One good – no production

I Law of one price – foreign price normalized to 1
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Asset markets: complete but segmented

International financial market

I Full set of Arrow-Debreu (real) securities:
I Security s: 1 unit of consumption good only in state s
I Price q(s) in terms of goods at t = 1

Domestic financial market

I Full set of Arrow-Debreu (nominal) securities:
I Security s: 1 unit of domestic currency only in state s
I Price p(s) in terms of domestic currency at t = 1
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Asset markets: complete but segmented

Foreign intermediaries

I Trade securities with SOE & IFM .. but have limited

capital
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Model: Small open economy

I Endowment: (y1, {y2(s)}), transfers: {T2(s)})

max
c1,{c2,a,f}

{
u(c1) + β

∑
s∈S

π(s)u(c2(s))

}

y1 = c1 +
∑
s∈S

[
q(s)f(s) + p(s)

a(s)

e1

]
y2(s) + T2(s) + f(s) +

a(s)

e2(s)
= c2(s) ∀s ∈ S

f(s) ≥ 0 ∀s ∈ S

e1, e2(s): exchange rates at t = 1 and t = 2

f(s), a(s): holdings of foreign and domestic security s

m: money holdings, x: satiation point of h
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Model: Foreign intermediaries

I Endowed with capital w

max
d1,{d2,a?,f?}

d?1 +
∑
s∈S

π(s)Λ(s)d?2(s)

subject to:

w = d?1 +
∑
s∈S

p(s)
a?(s)

e1
+
∑
s∈S

q(s)f?(s)

d?2(s) =
a?(s)

e2(s)
+ f?(s)

a?(s) ≥ 0, f?(s) ≥ 0

Consider Λ(s) = q(s)
π(s) (same SDF as IFM)
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Model: Central Bank

I Amounts invested at home and abroad, A(s) and F(s); and

transfers {T2(s)}.

I Budget constraint:

∑
s

p(s)
A(s)

e1
+
∑
s

q(s)F(s) = 0

T2(s) =
A(s)

e2(s)
+ F(s) ∀s ∈ S
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Model: Central Bank

Monetary policy objective: {i, e1, e2(s)}; where

1+ i =
1∑

s∈S p(s)
(NIRC)

I Nominal interest rate link to the prices individual securities

I Note that i = 0 (ZLB)

Can the CB achieve the objective? Are there costs? Are the

costs affected by the CB balance sheet?
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Equilibrium definition

Equilibrium given policy objective

HH’s consumption, (c1, {c2(s)}), and asset positions, {a(s), f(s)};

foreign intermediaries dividend policy, (d?1, {d
?
2(s)}), and asset

positions ({a?(s), f?(s)}); government transfers {T2(s)}, asset

{A(s), F(s)}; such that

1. HH and intermediaries maximize taking prices as given,

2. the government budget constraint holds, and

3. the domestic financial markets clear:

a(s) + a?(s) +A(s) = 0 ∀s ∈ S
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Government objective

I Government desires to implement (i, e1, {e2(s)}) – this is

given.

I Chooses policy {A(s), F(s)} and {T2(s)} as to implement the

equilibrium that maximizes household welfare.

I optimal equilibrium / optimal equilibrium allocation.

I For the rest of the talk: no income in the second period:

y1(s) = 0 for all s
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Preliminary: Trade deficit

I Trade deficits and net foreign assets:

c1 − y1︸ ︷︷ ︸
trade deficit

=

∑
s p(s)a

?(s)

e1︸ ︷︷ ︸
foreign liabilities

−
∑
s

q(s) [f(s) + F(s)]︸ ︷︷ ︸
foreign assets

c2(s) − y2(s) = f(s) + F(s) −
a?(s)

e2(s)
∀s ∈ S
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Preliminary: First best (real) allocation

First best (real) allocation, (cfb1 , {c
fb
2 (s)}):

max
(c1,{c2(s)})

{
u(c1) + β

∑
s∈S

π(s)u(c2(s))

}
s.t.: y1 − c1 +

∑
s∈S

q(s) (y2(s) − c2(s)) = 0

The capital of the intermediaries is irrelevant.

There is always a monetary policy objective s.t. FB is eqm.
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Characterizing monetary equilibria:
Arbitrage returns

I Arbitrage return for security s:

κ(s) ≡
e1

e2p(s)

1
q(s)

− 1 (1)

I Using the HH’s FOC

u ′(c0) = βπ(s)
e1

e2(s)p(s)
u ′(c2(s))

we get

κ(s) =
q(s)u ′(c1)

βπ(s)u ′(c2(s))
− 1
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Characterizing monetary equilibria:
Arbitrage returns

I κ(s) = 0: security s: same real return in all markets

I κ(s) > 0: security s: higher return at home than abroad

I κ(s) < 0: security s: higher return at abroad than home

(One direction arbitrages). In any equilibrium,

0 ≤ κ(s) ∀s ∈ S

and f(s) = 0 if strict.

⇒ return on domestic securities weakly higher than foreign.
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Resource losses

Using the HH and CB budget constraints, plus market clearing,

y1 − c1 +
∑
s∈S

q(s)(y2(s) − c2(s))

−

(∑
s∈S

κ(s)
p(s)a?(s)

e1

)
︸ ︷︷ ︸

L

= 0

L: Potential "arbitrage losses"
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Intermediaries profits

In any equilibrium, {a?(s)} solves

L = max
{a?(s)}

{∑
s∈S

κ(s)
p(s)a?(s)

e1

}
subject to

∑
s∈S

p(s)a?(s)

e1
≤ w̄

a?(s)

e2(s)
≥ 0 for all s ∈ S

The present value of intermediaries dividends is Π = w+ L.

Note: intermediaries invest in the highest κ security
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Intermediaries profits

L = κ+w

where

κ = max
s∈S

κ(s)
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Arbitraging the bonds

Consider (risk-adjusted) return differential on the bonds:

∆(i) = E
[
Λ(s)

(
e1
e2(s)

(1+ i) − (1+ i?)

)]

I κ(s) ≥ 0 for all s ∈ S implies ∆(i) ≥ 0.

I ∆(i) > 0 then κ(s) ≥ ∆(i) for some s ∈ S

I L ≥ ∆(i)w
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Implementability

(c1, {c2(s)}) is part of an equilibrium if and only if

κ(s) ≥ 0; for all s ∈ S∑
s∈S

q(s)

1+ κ(s)

e1
e2(s)

= (1+ i)−1

y1 − c1 +
∑
s∈S

q(s) [y2(s) − c2(s)] = κ×w
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Equal gaps allocations

I Consider allocations such that all securities are distorted

equally: κ(s) = κ for all s ∈ S

I Arbitrage gap is the same for all securities (and thus for

any portfolio):

κ = ∆(i)

I Associated (c1, {c2(s)}) is

u ′(c1)q(s) = β(1+ κ̄)π(s)u
′(c2(s)) ∀s

y1 − c1 +
∑
s∈S

q(s)(y2(s) − c2(s)) = κ̄× w̄

I First best is a special case.
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Equal gaps always a choice

For a given monetary policy objective, either (i) the set of

implementable allocations is empty or (ii) the equal gap

allocation with κ(s) = ∆(i) for all s is implementable.

I Only objectives with ∆(i) ≥ 0 are implementable

I ∆(i) = 0 ⇒ first best allocation is implementable

I y1 +
∑
s y2(s) > ∆(i)w and Inada ⇒ the set of

implementable allocations is non-empty.

I Equal gaps minimizes the losses, L, among all

implementable allocations.
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∆(i) = 0

I The first best allocation is the only equilibrium allocation

I w is sufficiently large:

⇒ F(s) = 0 for all s ∈ S optimal
I A neighborhood of F(s) = 0 is also optimal

I Backus-Kehoe benchmark: perfect capital mobility and

irrelevance of CB’s balance sheet.
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∆(i) > 0: A relaxed problem

Relax NIRC, and let κ0 a gap upper bound:

V̂(κ0) = max
(c1,{c2(s)}

{
u(c1) + β

∑
s∈S

π(s)u(c2(s))

}
s. t.

y1 − c1 +
∑
s∈S

q(s)(y2(s) − c2(s)) = κ0w̄

∑
s∈S

βπ(s)e1u
′(c2(s))

e2(s)u ′(c1)
≤ 1

1+ i

1 ≤ q(s)u ′(c1)

βπ(s)u ′(c2(s))
≤ 1+ κ0 for all s ∈ S

Optimal allocation:
κ = arg max

κ0≥∆(i)
V̂(κ0)
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A potential trade-off

I Higher κ0 increases losses

I Higher κ0 relaxes the NIRC constraint

Goals not necessarily aligned ⇒ trade-off depends on w

26



Main results

∑
s∈S

βπ(s)e1u
′(c2(s))

e2(s)u ′(c1)
≤ 1

1+ i

Result: Suppose that π(s)/q(s) is constant and u is DARA. Then

κ(s) is (weakly) decreasing in e2(s).

I When e2(s) is low (appreciation) ⇒ increase c2(s) (κ(s)).

I Dispersion in κ(s) increases losses proportional to w

Result: When w is large ⇒ equal gaps is optimal.
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Reserve Management

Suppose that y2(s) is constant.

I For all κ(s1) < κ:

c2(s1) = y2(s1) + F(s1)

(there are no private flows, CB has to do the trades)

I Let S ⊂ S s.t. κ(s) = κ:∑
s∈S

q(s) (c2(s1) − y2(s1)) + (1+ κ)w =
∑
s∈S

q(s)F(s1)
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Reserve Management

Suppose that y2(s) is constant.

I If equal gaps is optimal, then it suffices to invest

everything in a risk-free foreign security.
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Conclusion

I Optimal porfolio hinges on degree of openness (w)
I Relatively closed economies:

I Invest in foreign assets that pay when the currency
appreciates

I Relatively open economies:
I Invest in safe foreign assets

I CB can affect all domestic security prices by intervening

... and not just the nominal risk-free bond.

I More instruments is better!

I But the more open the economy is – the more costly it is

to use them.
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