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quadratic preferences and families of distribution functions. In addition, we provide several 
comparative statics results.
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1. Introduction

In the standard delegation model, a principal engages with a privately informed but biased agent, and contingent trans-
fers are infeasible. The principal chooses a set of permissible actions, knowing that the agent will privately observe the state 
of the world and then pick his preferred action from this set. In choosing the optimal set, the principal balances the benefit 
of expanding the agent’s choice set, so as to give the agent the flexibility to respond to the state of nature, against the 
benefit of restricting the agent’s choice set, so as to limit the expression of the agent’s bias.

In this paper, we extend the standard delegation model to allow for a two-dimensional action set. In particular, the 
principal may specify that a given action is permissible only when the agent also incurs a certain amount of wasteful or 
“money burning” expenditure. Put differently, we extend the standard delegation model to allow for contingent money 
burning. Under the assumption that the money burning expenditure lowers the welfare of the principal and agent in a 
symmetric fashion, we provide sufficient conditions under which money burning expenditures are used in the optimal 
delegation contract.

To establish our findings, we follow Amador and Bagwell (2013) and consider a general representation of the delega-
tion problem. The agent’s action is taken from an interval on the real line, the state has a continuous distribution over a 
bounded interval on the real line, and the preferences of the principal and agent are represented in a general fashion. In 
particular, unlike most of the previous delegation literature, we do not restrict the preferences of the principal and agent to 
take quadratic forms. The principal’s welfare function is continuous in the action and the state of nature, and is twice dif-
ferentiable and concave in the action. The agent’s welfare function is twice differentiable and strictly concave in the action, 
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and the state enters the agent’s welfare function in a standard multiplicative fashion. We assume that the agent’s preferred 
(or “flexible”) action is interior and strictly increasing in the state.

The possibility of money burning can be interpreted in a variety of ways. For example, we can imagine a setting in 
which certain “exceptional” actions are permitted only when wasteful administrative costs are incurred. Ambrus and Egorov 
(2017) provide extensive discussion of this interpretation. Additionally, if preferences are quadratic, stochastic allocations 
can be interpreted as money burning. Goltsman et al. (2009) and Kováč and Mylovanov (2009) provide related work. Also, 
in repeated games with privately observed and iid shocks, symmetric punishments can be understood as money burning. 
For related themes, see Athey et al. (2004, 2005) and Bagwell and Lee (2012).1 Finally, as Amador et al. (2006) show, in a 
consumption-savings problem, money burning can be interpreted as arising when a consumption-savings bundle is selected 
that lies in the interior of the consumer’s budget set.

To motivate our assumption that money burning lowers the welfare of the principal and agent, we consider two economic 
examples. First, and following Amador and Bagwell (2013), we may consider a setting in which two players select a menu 
of permissible actions and associated money burning levels, with the objective of maximizing the ex ante sum of their 
welfares and with the understanding that one of the two players will later observe the state and make the selection from 
the menu that maximizes that player’s welfare. In this example, money burning directly lowers the welfare of the “agent” 
(i.e., the player that makes the selection from the menu) and thereby lowers the welfare of the “principal” (i.e., the ex 
ante sum of their welfares). Second, and following Ambrus and Egorov (2017), we may consider a setting with a principal 
and agent, in which an ex-ante participation constraint arises since the agent has an outside option. If the principal and 
agent can achieve non-contingent transfers at the ex ante stage, then the binding participation constraint implies that the 
principal must use an ex ante transfer to compensate the agent for expected money burning expenses. As a consequence, 
money burning again lowers the welfare of both the principal and the agent.

We provide two propositions that give sufficient conditions under which money burning expenditures are used in the 
optimal delegation contract. Proposition 1 offers a set of conditions under which optimal delegation requires that (i) for 
states below a critical level, the agent has full flexibility and selects the preferred action while incurring no money burning 
expenses; and (ii) for states above the critical level, higher states induce higher actions that are paired with higher levels 
of money burning. Proposition 2 provides a different set of conditions under which optimal delegation requires that (i) for 
states below a critical level, the agent pools at a common action with no money burning; and (ii) for states above the 
critical level, higher states induce higher actions that are paired with higher levels of money burning. In both cases, for 
higher states, the agent selects an action that is below the preferred level and incurs money burning expenses. Intuitively, 
for higher states, an agent resists deviating to a higher action, closer to the agent’s preferred level, due to the higher money 
burning expense that would then be required.

To develop these results, we build on work by Amador et al. (2006) and Amador and Bagwell (2013) and use a general 
Lagrangian approach. This approach enables the analyst to develop sufficient conditions for the optimality of a conjectured 
solution. The work of Ambrus and Egorov (2017) motivates us to conjecture solutions with the features described in the 
previous paragraph. In a set up with quadratic utility and a uniform distribution for states of nature, they provide an an-
alytical characterization of optimal delegation contracts that feature money burning for certain parameters ranges.2 Using 
our Lagrangian approach, we provide a more general set of sufficient conditions for money burning. In particular, the suffi-
cient conditions that we provide include but extend beyond the conditions provided by Ambrus and Egorov (2017) for the 
quadratic-uniform model. Our work also significantly extends the analysis of Amador and Bagwell (2013), who allow for 
money burning, but impose assumptions such that actual money burning is not used in an optimal delegation contract.

While as mentioned we focus on a setting in which the principal and agent experience symmetric costs with respect to 
money burning, we show that our approach extends naturally to include asymmetric money burning costs provided that 
the payoff functions for the principal and agent are both strictly decreasing and affine functions of the amount of money 
burned. The key idea is that the payoffs can then be re-scaled so as to fit within the symmetric cost framework to which our 
propositions apply. At the same time, we note that the corresponding rescaling may alter the form of optimal delegation. To 
develop and illustrate these points, we consider the setting in which our first proposition would apply were money burning 
costs symmetric. Extending the corresponding assumptions to the rescaled payoff functions, and focusing on the situation 
wherein the agent has positive bias (i.e., is biased toward actions that are too high as viewed by the principal), we show 
that optimal delegation is such that the ex ante probability of money burning is higher as the money burning expense 
incurred by the principal is reduced relative to that of the agent.

To better understand the role of money burning, we also consider optimal delegation when money burning is not al-
lowed. Our analysis of this setting builds on Amador and Bagwell (2013), who establish, among other results, sufficient 
conditions for a “cap allocation” (i.e., a delegation set in which the set of permissible actions is defined by a maximal action 
and in which money burning (if feasible) is never required) to be optimal. For a restricted family of preferences, we estab-
lish here easier-to-check sufficient conditions for the optimality of a cap allocation in the setting where money burning is 
infeasible. This result implies that, under a slight strengthening of the assumption used to support Proposition 1, optimal 

1 For related static settings with multiple agents, see McAfee and McMillan (1992), Condorelli (2012) and Chakravarty and Kaplan (2013).
2 To our knowledge, this is the first explicit characterization in a standard quadratic-uniform model of optimal delegation contracts that feature actual 

money burning. Within the context of a consumption-savings problem, Amador et al. (2006) numerically obtained solutions to the delegation problem 
where money burning is used when the distribution of states of nature is discrete. See also the related work of Ambrus and Egorov (2013).



384 M. Amador, K. Bagwell / Games and Economic Behavior 121 (2020) 382–412
delegation would take the form of a cap were money burning not allowed. Based on this comparison, we conclude that 
the use of money burning is attractive in this case, because it provides an incentive-compatible means for the agent who 
observes higher states to select actions that rise somewhat with the underlying state.

Our propositions provide sufficient conditions for money burning and may be easily employed for applications. To illus-
trate the value of our propositions, we explore in detail two specific settings.

First, we analyze a model of cooperation in which two players select a menu of permissible actions and associated 
money burning levels. As in the first economic example mentioned above, the players pick the menu with the objective 
of maximizing the ex ante sum of their welfares and with the understanding that one of the players, the agent, will later 
observe the state and make the selection from the menu that maximizes the agent’s welfare. The specific cooperation model 
that we analyze allows for general (non-quadratic) preferences and distributions, but a key ingredient of the model is that 
the two players have welfare functions that take related, but distinct, forms.3 In particular, the players equally share the 
benefits generated by an action for any given state; however, the agent incurs a lower marginal cost from higher actions and 
is thus biased toward actions that are too high from the other player’s perspective. One finding is that the optimal menu 
uses money burning if the density is non-increasing at higher values in the support and the cost asymmetry for actions is 
not too large. We also derive comparative statics results and show how the optimal menu varies with the size of the cost 
asymmetry.

To further illustrate the cooperation model, we provide micro-foundations for a particular example in which a privately 
informed player proposes a start-up venture to another player, where the latter player incurs higher costs. Building on the 
comparative statics results that we develop for the cooperation model, we show that the optimal delegation contract exhibits 
an interesting non-monotonicity under which the ex ante probability of money burning increases and then decreases as the 
players’ interests become more aligned.

Second, and in line with the second economic example mentioned above, we follow Ambrus and Egorov (2017) and 
consider quadratic preferences while also extending their analysis to allow for more general (non-uniform) distribution 
functions. After showing that our two propositions capture their corresponding results on money burning when the dis-
tribution function is uniform, we generalize their results to allow for families of distribution functions.4 Our work here 
illustrates how our propositions can be easily applied to obtain new results. In addition, since this example fits within 
the restricted family of preferences mentioned above, we may easily characterize conditions under which a cap allocation 
would be optimal were money burning not allowed. We illustrate this point for the uniform-distribution setting. For this 
setting, we identify conditions under which the optimal delegation contract when money burning is allowed requires for 
higher states that the agent engages in money burning and selects actions above the cap that would prevail were money 
burning not allowed. Whether or not money burning is allowed, the agent has full flexibility when lower states are realized; 
however, the agent enjoys such flexibility under a smaller subset of states when money burning is allowed.

Our work relates to a rich literature on delegation theory. Most of this work develops conditions under which “interval 
delegation” is optimal, where interval delegation is defined by a delegation set in which the set of permissible actions 
takes the form of a single interval and money burning (if feasible) is never required.5 Holmstrom (1977) first defined and 
analyzed the delegation problem. For a setting without the possibility of money burning, he provides sufficient conditions 
for the existence of an optimal solution to the delegation problem. He also establishes for a specific example with quadratic 
preferences that interval delegation is optimal. Melumad and Shibano (1991) solve the delegation problem in a setting in 
which money burning is infeasible and with quadratic loss functions and a uniform distribution for the state. Allowing for 
general distributions, and among other results, Alonso and Matouschek (2008) provide necessary and sufficient conditions 
for the optimality of interval delegation when preferences are quadratic and money burning is infeasible.6 Analyzing a 
consumption-savings problem, Amador et al. (2006) provide conditions under which interval delegation (in the form of a 
minimum savings rule) is optimal when money burning is feasible. In the quadratic-uniform model, Ambrus and Egorov 
(2017) identify a range of parameters under which interval delegation is optimal when money burning is feasible. Finally, 
Amador and Bagwell (2013) consider a general representation of the delegation problem and use Lagrangian techniques to 
establish necessary and sufficient conditions for the optimality of interval delegation, both when money burning is infeasible 

3 Amador and Bagwell (2013) adopt a related approach in their trade-agreement applications, in the broad sense that the objective for these applications 
is also to maximize the ex ante sum of the welfares of two players. The welfare functions for the trade-agreement applications, however, are significantly 
different than those considered here. As explained further in footnote 21, the trade-agreement applications do not satisfy the assumptions of the cooperation 
model considered here.

4 At the same time, Ambrus and Egorov (2017) is more general in other respects. For example, they study the effects of a bound on the ex-ante transfer 
between the principal and the agent, and they also consider an extension that allows for limited state contingent transfers. See also footnotes 29 and 30.

5 A cap allocation is thus a special form of interval delegation, in which the upper bound of the interval is defined by the cap and the lower bound is 
defined by the preferred action of the lowest type.

6 In addition, Alonso and Matouschek (2008) provide comparative-statics results and characterize the value of delegation. They also obtain a characteri-
zation when interval delegation is not optimal. As well, they establish sufficient conditions under which interval delegation is optimal when the principal’s 
preferences take a more general form but with the requirement that there is an intermediate type who has no bias.
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and when money burning is feasible.7 Their corresponding propositions deliver as special cases the main results on interval 
delegation obtained by Alonso and Matouschek (2008), Amador et al. (2006), and Ambrus and Egorov (2017).8

In comparison to the interval delegation literature, an important distinction of the present paper is that we assume 
that money burning is feasible and then provide general conditions under which money burning expenditures are actually 
used in the optimal delegation contract. We note in particular that Amador and Bagwell (2013) do not provide sufficient 
conditions for the optimality of delegation contracts that actually use money burning. We also provide simple sufficient 
conditions for the optimality of a cap allocation for a restricted family of preferences when money burning is not allowed. 
We illustrate the value of our findings in two specific settings and expect that they will be useful for future applications as 
well.

The paper is organized as follows. The basic model is presented in Section 2. In Section 3, we analyze optimal delegation 
with money burning; specifically, we develop our general approach and state and prove our two propositions. Next, in 
Section 4, we consider the setting without money burning and establish simple sufficient conditions for the optimality of 
a cap allocation. In Section 5, we develop our specific model of cooperation and delegation, and we apply our propositions 
to develop findings for this application. We focus in Section 6 on the case of quadratic welfare functions and families of 
distribution functions. Section 7 concludes. Remaining proofs and findings are found in the Appendix.

2. Basic set up

We consider a delegation problem with one principal and one agent. Letting the values of π and γ respectively represent 
an action (or allocation) and a state (or shock), we denote the principal’s welfare function as w(γ , π) − t and the agent’s 
welfare function as γπ + b(π) − t , where t ≥ 0 is an additional action that reduces everyone’s welfare. By including the 
action t , we extend the standard delegation problem to allow for the possibility of money burning.

We assume that γ is privately observed by the agent and has a continuous distribution F (γ ) with bounded support 
� = [γ , γ ] and with an associated continuous density f (γ ) > 0. We assume further that π ∈ �, where � is an interval of 
the real line. Without loss of generality, for π in the extended reals, we may define � = [0, π ] if π < ∞ or � = [0, π) if 
π = ∞. Henceforth, and following Amador and Bagwell (2013), we also maintain the following basic conditions9:

Assumption 1. The following holds: (i) w : � × � → R is continuous on � × �; (ii) w(γ , π) is twice differentiable and 
concave in π ; (iii) b : � → R is twice differentiable and strictly concave in π ; (iv) γπ + b(π) has a unique interior 
maximum over π ∈ � for all γ ∈ �, denoted by π f (γ ) with π f twice differentiable and π ′

f (γ ) > 0; (v) wπ (γ , π) is 
continuous on � × �; and (vi) if π < ∞ then b′(π) and wπ (γ , π) are finite for all γ .

Conditions (i)-(v) in Assumption 1 are standard. Condition (vi) simplifies the analysis in some places but is straightfor-
ward to relax.

Notice that π f (γ ) denotes the agent’s preferred or flexible action, given the state γ . We may thus understand that 
wπ (γ , π f (γ )) indicates the direction of the bias of the agent. For example, if wπ (γ , π f (γ )) > 0, then the principal would 
prefer a higher action than the one most preferred by the agent of type γ .

The problem is to choose an action allocation, π : � → �, and an amount of money burned, t : � →R, so as to maximize 
the principal’s expected welfare:

max
∫
�

(
w(γ ,π(γ )) − t(γ )

)
dF (γ ) subject to: (P)

γ ∈ arg max
γ̃ ∈�

{
γπ(γ̃ ) + b(π(γ̃ )) − t(γ̃ )

}
, for all γ ∈ �

t(γ ) ≥ 0 , ∀γ

where the first constraint arises from γ being private information of the agent and the second constraint ensures that 
money can be burned but not printed.10

7 For other work on the theory of delegation, see, for example, Armstrong and Vickers (2010), Martimort and Semenov (2006), and Mylovanov (2008). 
For models with quadratic preferences, Koessler and Martimort (2012) and Frankel (2016) consider optimal delegation with multi-dimensional actions; 
however, they do not consider money burning, and their results differ significantly from those found here. See also Frankel (2014) for analysis of optimal 
max-min mechanisms in a multiple-decision delegation problem in which the principal is uncertain about the agent’s payoffs. Finally, some recent work 
also uses Lagrangian methods related to those used by Amador et al. (2006) and Amador and Bagwell (2013) to study optimal delegation in other settings. 
Amador and Bagwell (2020) consider a regulatory setting with a participation constraint but without the possibility of money burning, Burkett (2016)
examines two regimes of which one is a delegation setting with a participation constraint in which money burning is allowed but not optimal, and Guo 
(2016) and Krähmer and Kováč (2016) study optimal delegation in dynamic settings.

8 See Section 5 of Amador and Bagwell (2013) for further discussion.
9 Note that Assumption 1 is slightly different from Assumption 1 in Amador and Bagwell (2013), because, differently from that paper, we do not need 

to incorporate cases where the payoff functions have infinite derivatives at the boundaries of �. Similar modifications can be undertaken in the present 
paper.
10 All integrals used in the paper are Lebesgue integrals.
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To motivate our analysis, we describe two economic examples that fit into our framework.

Example 1. Cooperation and delegation. Following Amador and Bagwell (2013), we may consider a setting in which two 
players choose a menu of permissible actions and associated money burning levels with the goal of maximizing the ex 
ante sum of their welfares and with the understanding that one of the two players will later observe the state and make a 
selection from the menu. In this case, we may define the welfare functions of the two players as γπ(γ ) + b(π(γ )) − t(γ )

and v(γ , π(γ )), respectively, where the former welfare function is associated with the player that later observes the state. 
The sum of players’ welfare functions then takes the form w(γ , π(γ )) − t(γ ) ≡ γπ(γ ) +b(π(γ )) + v(γ , π(γ )) − t(γ ). Here, 
money burning enters the objective function and the constraint in a symmetric way, since in each instance it is associated 
with a loss in one of the player’s welfare.11

We give this example primary emphasis. As we discuss further in Section 5, it allows for a range of economic inter-
pretations. We give particular attention there to the possibility in which two players contemplate the level of a symmetric 
investment, π , in a joint “start-up” project. One of the players, the agent, privately observes a demand-side state variable, 
γ , where a higher value for γ indicates a greater marginal benefit from investment for the players. The players split the 
revenue equally, but the agent incurs less than half of the cost of the project. For instance, the partner may be a skilled 
engineer with a higher opportunity cost of time. From the partner’s perspective, the agent is thus biased in favor of in-
vestment levels that are too high. For this setting, money burning naturally corresponds to the persuasion or lobbying costs 
that the agent must incur as an expression of conviction before the agent is allowed to select a higher investment level. We 
provide a detailed treatment of this example in Section 5.

Example 2. Participation constraint and ex ante transfer. Following Ambrus and Egorov (2017), we may consider a setting with 
a principal and an agent, where the agent privately observes the state and makes a selection from the menu selected by the 
principal. The agent has an outside option yielding zero utility, which results in an ex ante participation constraint. At the 
ex ante stage, the principal and agent can also achieve non-contingent transfers, where p ∈ 
 denotes a transfer or payment 
from the principal to the agent. The agent’s ex ante participation constraint then takes the following form: 

∫
�
(γ π(γ ) +

b(π(γ )) − t(γ ))dF (γ ) + p ≥ 0.12 The principal’s objective is to maximize her expected welfare less the ex ante payment to 
the agent: 

∫
�

v(γ , π(γ ))dF (γ ) − p. Since the participation constraint will bind, we may solve for p and substitute into the 
objective, so that the principal’s objective function becomes 

∫
�
(v(γ , π(γ )) + γπ(γ ) + b(π(γ )) − t(γ ))dF (γ ). This setting 

fits into our framework as well once we define w(γ , π(γ )) ≡ γπ(γ ) +b(π(γ )) + v(γ , π(γ )). Here, money burning appears 
symmetrically in the objective function and the constraint, since the participation constraint ensures that the principal uses 
an ex ante transfer to compensate the agent for expected money burning expenses. We discuss this example further in 
Section 6.

3. Optimal delegation with money burning

Our goal in this section is to provide sufficient conditions for the optimality of money burning. Following Amador et al. 
(2006) and Amador and Bagwell (2013), we begin by re-stating Problem (P) and describing our general Lagrangian approach. 
Next, motivated by the work of Ambrus and Egorov (2017), we conjecture the existence of particular allocations that feature 
money burning and provide sufficient conditions for these allocations to be optimal. Ambrus and Egorov (2017) provide an 
analytical characterization of optimal allocations that feature strict money burning within a set up with quadratic utility and 
a uniform distribution for shocks. Using our Lagrangian approach, we are able to establish a more general set of sufficient 
conditions.

3.1. General approach

We begin by re-stating Problem (P). By expressing the incentive constraints (i.e., the first constraint in Problem (P)) in 
their standard integral form plus a monotonicity restriction, we may re-write Problem (P) as13:

max{
π : � → �,

t : � →R

}
∫

(w(γ ,π(γ )) − t(γ ))dF (γ ) subject to:

γπ(γ ) + b(π(γ )) − t(γ ) =
γ∫

γ

π(γ̃ )dγ̃ + U , for all γ ∈ �

11 Amador and Bagwell (2013) use this setting to interpret the design of trade agreements.
12 The zero utility outside option is without loss of generality as long as the ex-ante transfer, p, is unrestricted. See Ambrus and Egorov (2017) for analysis 

of a case where p is restricted.
13 See Milgrom and Segal (2002).
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π non-decreasing, and t(γ ) ≥ 0, for all γ ∈ �

where U ≡ γπ(γ ) + b(π(γ )) − t(γ ).
We next solve the integral equation for t(γ ) and substitute into both the objective and the non-negativity constraint. We 

thereby generate the following equivalent problem:

max{
π : � → �,

t(γ ) ≥ 0

}
∫ (

v(γ ,π(γ )) f (γ ) + (1 − F (γ ))π(γ )
)

dγ + U subject to: (P’)

γπ(γ ) + b(π(γ )) −
γ∫

γ

π(γ̃ )dγ̃ − U ≥ 0; for all γ ∈ � (1)

π non-decreasing (2)

where v is defined such that v(γ , π) ≡ w(γ , π) − b(π) − γπ .
Note that Problem (P’) requires solving for π(γ ) and t(γ ). With these solutions in place, we can recover the entire 

function t(γ ) using the integral constraint as follows:

t(γ ) = γπ(γ ) + b(π(γ )) −
γ∫

γ

π(γ̃ )dγ̃ − U (3)

To solve Problem (P’), we follow and extend the Lagrangian approach used by Amador et al. (2006) and Amador and 
Bagwell (2013). We thus first embed the monotonicity constraint (2) into the choice set of π(γ ). Letting the choice set for 
π be defined as � ≡ {π |π : � → �; and π non-decreasing}, the problem is then to choose a function π ∈ � and a number 
t(γ ) ≥ 0 so as to maximize the objective of Problem (P’) subject to (1).

By assigning a cumulative multiplier function � to constraint (1), we can write the Lagrangian for the problem as 
follows:

L(π, t(γ )|�) ≡
∫

γ ∈�

(
v(γ ,π(γ )) f (γ ) + (1 − F (γ ))π(γ )

)
dγ + U (4)

−
∫

γ ∈�

⎛⎜⎝ γ∫
γ

π(γ ′)dγ ′ + U − γπ(γ ) − b(π(γ ))

⎞⎟⎠d�(γ ).

The Lagrange multiplier � is restricted to be a non-decreasing function.
To develop our sufficiency results, we rely on Theorem 1 stated in Appendix A, which is a slightly modified version 

of the sufficiency Theorem 1 of Section 8.4 in Luenberger (1969, p. 220). Our approach is to identify a candidate solution 
and construct an associated non-decreasing Lagrange multiplier function such that complementary slackness is satisfied and 
the candidate solution maximizes the resulting Lagrangian. To verify that the candidate solution maximizes the resulting 
Lagrangian, we utilize first order conditions as developed in Amador et al. (2006). In turn, to apply first order conditions, 
we must ensure that our constructed Lagrange multiplier � is also such that the resulting Lagrangian is concave in π when 
evaluated at this specific multiplier.14 Amador and Bagwell (2013) follow a similar approach; however, differently from that 
paper, we develop here propositions under which the solution involves actual money burning.

3.2. Money burning: Case 1

We now look for an allocation with the following properties: from γ to some γx , the allocation provides full flexibility 
where no money is burned; and from γx to γ , the allocation burns money but still provides some flexibility. Specifically, 
for types γ > γx , we conjecture that the allocation implements the point-wise maximum of the integrand in Problem (P’), 
which we denote by x(γ ). Accordingly, x(γ ) is defined as the solution to the following first order condition

vπ (γ , x(γ )) f (γ ) + 1 − F (γ ) = 0.

Our proposed allocation in this case is:

πx(γ ) =
{
π f (γ ) ; for γ ∈ [γ ,γx],
x(γ ) ; for γ ∈ (γx, γ ],

14 Observe that the Lagrangian is linear in t(γ ).
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Fig. 1. Money burning, Case 1.

with tx(γ ) = 0 and where γx is formally defined below in Assumption 2.
The next assumption imposes conditions that turn out to be sufficient for such an allocation to be optimal.

Assumption 2. The following holds: (i) v(γ , π) is concave in π for all γ ∈ �; (ii) vπ (γ , π f (γ )) ≤ 0; (iii) there exists a 
continuous function x(γ ) and a value for γx ∈ � such that: (a) vπ (γ , x(γ )) f (γ ) = F (γ ) − 1 for all γ ≥ γx; (b) x(γ ) ≤ π f (γ )

for all γ > γx and with equality at γx; (c) x(γ ) is non-decreasing for all γ ≥ γx; (d) F (γ ) − vπ (γ , π f (γ )) f (γ ) is non-
decreasing for all γ < γx .

Let us now briefly discuss the conditions in Assumption 2. Assumption 2i guarantees that Problem (P’) is a convex 
problem, and hence that the Lagrangian is concave. We note that the function v is concave in π in the economic examples 
mentioned above if the uninformed player has concave preferences (in the first example) or if the principal has concave 
preferences (in the second example). Assumption 2i plays an important role in our analysis and contrasts interestingly with 
Amador and Bagwell (2013). For the setting where money burning is allowed, that paper provides conditions under which 
optimal delegation does not entail the use of actual money burning. Those conditions are more easily satisfied when v is 
convex.

Assumption 2ii guarantees that the bias at the bottom of the distribution is positive, which must hold if the principal 
does not want to pool allocations at the lowest states. Assumption 2iii describes the conditions that point γx and the allo-
cation in the money burning region, x(γ ), must satisfy, where γx is defined by x(γx) = π f (γx). In the proof, part (d) ensures 
that the constructed multiplier function is non-decreasing and the Lagrangian is concave for γ < γx; part (c) guarantees 
monotonicity of the proposed allocation; part (b) ensures that the allocation is continuous and burns non-negative amounts 
of money for all types above γx; and part (a) guarantees that the proposed allocation satisfies the first order conditions of 
the Lagrangian.15

The following is a sufficiency result:

Proposition 1. The proposed allocation (πx(γ ), tx(γ )) solves Problem (P’) if Assumption 2 holds.

Proof. In Appendix B. �
Fig. 1 illustrates the money burning solution for Case 1. For lower states (i.e., for γ ≤ γx), the agent selects the flexible 

action and no money burning is required. For higher states (i.e., for γ > γx), the agent’s action is determined by the 
function x. Note that Assumption 2iii part (c) guarantees that x is non-decreasing, as required by the incentive constraints. 
Assumption 2iii part (b) implies that x lies below the agent’s flexible action. Hence, to prevent the agent from deviating and 
selecting a higher action intended for a higher state, the optimal delegation contract utilizes money burning, where higher 
actions are paired with higher levels of money burning.16

15 Note that part (c) of Assumption 2iii is sure to hold if, for all γ ∈ � and π ∈ �, vππ (γ , π) < 0 and vπ (γ , π) + (1 − F (γ ))/ f (γ ) is non-decreasing. For 
distributions with a non-decreasing hazard rate, the latter condition requires vπγ (γ , π) ≥ 0. Similar observations apply for Assumption 3 below.
16 It is possible that there is a non-empty interval of values for γx satisfying Assumption 2. For these values, x(γ ) = π f (γ ), and thus the proposed 

allocation is independent of the choice of γx from this interval. Assumption 2iii part (d) guarantees that such an interval is the only case where there are 
multiple values for γx .
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3.3. Money burning: Case 2

We next look for an allocation with the following properties: from γ to some γy , the allocation provides no flexibility; 
and from γy to γ , the allocation burns money while providing some flexibility. Similar to Case 1, for types γ > γy , we 
conjecture that the allocation implements the point-wise maximum of the integrand in Problem (P’), denoted by x(γ ).

Our proposed allocation in this case is:

πy(γ ) =
{

x(γy) ; for γ ∈ [γ ,γy],
x(γ ) ; for γ ∈ (γy, γ ],

with t y(γ ) = 0 and where γy is formally defined below in Assumption 3.
The next assumption imposes conditions that turn out to be sufficient for such an allocation to be optimal.

Assumption 3. The following holds: (i) v(γ , π) is concave in π for all γ ∈ �; (ii) there exists a continuous function x(γ )

and a value γy ∈ � such that (a) vπ (γ , x(γ )) f (γ ) = F (γ ) − 1, for all γ ≥ γy ; (b) x(γ ) ≤ π f (γ ), for all γ ≥ γy ; (c) x(γ ) is 
non-decreasing for all γ ≥ γy ; (d) the following holds:

γ + b′(x(γy)) +
γ∫

γ

[vπ (γ̃ , x(γy)) f (γ̃ ) + 1 − F (γ̃ )]dγ̃ ≥ 0,

for all γ ∈ [γ , γy] with equality at γy .

We may interpret the conditions in Assumption 3 as follows. As discussed above in the context of Assumption 2, part 
(i) of Assumption 3 may be directly interpreted in terms of our economic examples. This assumption again guarantees that 
Problem (P’) is a convex problem, and hence that the Lagrangian is concave. Part (ii) of Assumption 3 provides conditions 
that the point γy and the allocation in the money burning region, x(γ ), must satisfy. We recall that the function x maximizes 
pointwise the integrand in Problem (P’). In the proof, parts (b) and (c) guarantee monotonicity of the proposed allocation 
and that the allocation is continuous and burns non-negative amounts for money for all types above γy ; and parts (a) and 
(d) guarantee that the proposed allocation satisfies the first order conditions of the Lagrangian.

The next proposition is an alternative sufficiency result for money burning:

Proposition 2. The proposed allocation (πy(γ ), t y(γ )) solves Problem (P’) if Assumption 3 holds.

Proof. In Appendix C. �
In Appendix D, we provide a set of sufficient conditions that, although less general, are easier to check than those in 

Assumption 3.17 Note also that Assumption 3ii part (d) implies that γ + b′(x(γy)) ≥ 0 and thus x(γy) ≤ π f (γ ).
Fig. 2 illustrates the money burning solution for Case 2. For lower states (i.e., for γ ≤ γy), the agent pools at the flexible 

action for type γy and no money burning is required. For higher states (i.e., for γ > γy), the agent’s action is determined 
by the function x. Note that Assumption 3ii part (c) guarantees that x is non-decreasing, as required by the incentive 
constraints. Assumption 3ii part (b) implies that x lies below the agent’s flexible action. As before, to prevent the agent 
from deviating and selecting a higher action intended for a higher state, the optimal delegation contract utilizes money 
burning, where higher actions are paired with higher levels of money burning.

3.4. Asymmetric costs

Motivated by our two economic examples, Problem (P) focuses on money burning with symmetric costs to both the 
agent and the principal. For other examples, however, the principal and agent may have asymmetric costs with respect to 
money burning. In this subsection, we briefly consider the extension to asymmetric costs. We show that the extension to 
asymmetric costs is without loss of generality as long as both payoff functions are strictly decreasing and affine functions 
of the amount of money burned, since the payoffs functions can then be re-scaled so that the resulting problem is captured 
by Problem (P). But we also show that this re-scaling of the payoff functions, w(γ , π) and b(π) +γπ , changes the function 
v(γ , π) ≡ w(γ , π) − (γ π + b(π)) and thus may alter the form of optimal delegation.

To develop and illustrate these points, let us suppose in this subsection that, when the agent incurs a money burning 
expense t , the principal incurs a money burning expense of (1 −ρ)t , where ρ ∈ [0, 1).18 The setup with symmetric costs as 
analyzed above in Problem (P) obtains when ρ = 0. Allowing for any ρ ∈ [0, 1), we represent the objective function as

17 The easier-to-check conditions do not involve γy and are stated only in terms of the function x(γ ) which is defined for all γ ∈ �.
18 In the limiting case where ρ = 1, the principal is not affected by t(γ ). It is then possible to implement the action that maximizes the principal’s welfare 

given the realized γ . Such an implementation relies on appropriately choosing t(γ ), so as to provide the agent with the right incentives.
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Fig. 2. Money burning, Case 2.∫ (
w(γ ,π(γ )) − (1 − ρ)t(γ )

)
dF (γ ). (5)

The optimal delegation contract for this setting maximizes (5) subject to the same constraints as imposed in Problem (P). 
To re-scale this problem, we divide the objective in (5) by (1 − ρ) and re-write the objective as∫ (

w̃(γ ,π(γ )) − t(γ )
)
dF (γ ),

where w̃(γ , π(γ )) ≡ 1
1−ρ w(γ , π(γ )). We can now map the problem with asymmetric costs into Problem (P) by replacing 

w(γ , π(γ )) with w̃(γ , π(γ )).
To apply Propositions 1 and 2, we must likewise re-define the function v(γ , π). We thus define ṽ(γ , π) ≡ w̃(γ , π) −

(γ π + b(π)). We can now apply Propositions 1 and 2 by replacing w(γ , π(γ )) with w̃(γ , π(γ )) and v(γ , π(γ )) with 
ṽ(γ , π(γ )), respectively. We note, however, that the function ṽ(γ , π(γ )) depends on ρ . The form of optimal delegation 
may thus vary with the extent to which money burning costs are asymmetric.19

To illustrate this point, we consider Case 1 while allowing now for ρ ∈ [0, 1) and thus replacing w(γ , π(γ )) with 
w̃(γ , π(γ )) and v(γ , π(γ )) with ṽ(γ , π(γ )), respectively. Maintaining our assumptions that Assumptions 1 and 2 hold 
when ρ = 0, it is straightforward to show that Assumptions 1, 2i and 2ii must hold for ρ ∈ [0, 1). If we assume further 
that, for ρ ∈ [0, 1), Assumption 2iii likewise holds once x(γ ) is replaced by x̃(γ ) and γx is replaced by γ̃x , respectively, 
where ̃x(γ ) solves ṽπ (γ , ̃x(γ )) f (γ ) + 1 − F (γ ) = 0 and γ̃x is such that ̃x(γ̃x) = π f (γ̃x), then we may use Proposition 1 to 
establish the optimality of the allocation (π̃x(γ ), tx(γ )) where π̃x(γ ) is given by πx(γ ) once x(γ ) and γx are replaced by 
x̃(γ ) and γ̃x , respectively. Note that, when costs are symmetric and thus ρ = 0, ̃x(γ ) = x(γ ) and γ̃x = γx; hence, the optimal 
delegation contract featured in Proposition 1 obtains in this more general setting for the special case where ρ = 0.

For the Case 1 setting, we can determine how asymmetric costs affect the form of optimal delegation by showing how 
x̃(γ ) and γ̃x vary with ρ . To focus our discussion, we assume that the model with ρ = 0 exhibits positive bias; that is, we 
assume that vπ (γ , π f (γ )) < 0 for all γ ∈ �. Let us say that Assumption 2 holds for any ρ ∈ [0, 1) whenever Assumption 2
holds for ρ ∈ [0, 1) when we replace v(γ , π(γ )) with ̃v(γ , π(γ )), x(γ ) with ̃x(γ ), and γx with γ̃x , respectively. Our finding 
is as follows:

Corollary 1. Suppose that the model with ρ = 0 exhibits positive bias. Suppose also that Assumption 2 holds for any ρ ∈ [0, 1). We 
then have that ∂ x̃(γ̃x)

∂ρ < 0 for any ρ ∈ (0, 1). If further ̃x′(γ ) < π ′
f (γ ) for all γ ∈ � and ρ ∈ [0, 1), then ∂γ̃x

∂ρ < 0 for any ρ ∈ (0, 1).

Proof. In Appendix E. �
It is understood here that ∂ x̃(γ̃x)

∂ρ captures the direct effect of a marginal change in the suppressed argument ρ on ̃x(γ )

when γ is held fixed at the value for γ̃x that prevailed prior to the change in ρ . The induced change in γ̃x of a marginal 
change in ρ is captured by ∂γ̃x

∂ρ .
When the symmetric cost model exhibits positive bias and Assumption 2 holds for any ρ ∈ [0, 1), Corollary 1 indicates 

that the optimal delegation contract responds to a marginal increase in ρ ∈ [0, 1) by calling for a lower action ̃x(γ̃x) given 
the prevailing value for γ̃x . If we assume further that the ̃x(γ ) function is always strictly flatter than the π f (γ ) function, 

19 Amador and Bagwell (2013) also consider the extension to allow for imperfect transfers (i.e., asymmetric costs with respect to money burning). We 
proceed here in a broadly similar manner, but a key difference is that Amador and Bagwell (2013) study conditions under which the introduction of 
imperfect transfers would not interfere with the optimality of a specific cap allocation. By contrast, we study here a setting in which actual money burning 
is optimal. The introduction of imperfect transfers then changes the optimal delegation contract.
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then we can be sure that γ̃x is uniquely defined for any ρ ∈ [0, 1). (Notice that Fig. 1 is drawn under this assumption for 
the special case where ρ = 0.) It then follows directly that the optimal delegation contract is characterized by a lower value 
for γ̃x as ρ is marginally increased. An immediate implication is that the optimal delegation contract then has a higher ex 
ante probability of money burning following a small increase in ρ ∈ (0, 1).

The characterizations reported in Corollary 1 rely on the property that ṽππ (γ , π) < 0 when ρ ∈ (0, 1) as confirmed 
in Appendix E. If vππ (γ , π) < 0, then the results extend without modification for ρ ∈ [0, 1). Under the conditions in 
Corollary 1, we can then compare the symmetric cost model with the asymmetric cost model (for any ρ ∈ (0, 1)) and 
conclude that the ex ante probability of money burning is higher in the latter.

4. Optimal delegation without money burning

In the previous section, we extend the standard delegation problem to allow for the possibility of money burning and 
establish conditions under which optimal delegation entails money burning. To better understand the role of money burn-
ing, we consider in this section optimal delegation when money burning is not allowed. Our analysis builds on Amador 
and Bagwell (2013), who provide sufficient (and necessary) conditions for interval delegation to be optimal, with and with-
out money burning. Here, we assume that money burning is not possible, consider a restricted family of preferences and 
establish easier-to-check sufficient conditions for the optimality of interval delegation in the form of a cap allocation. For 
the preference family, this result implies that, under a slight strengthening of Assumption 2, optimal delegation would take 
the form of a cap were money burning not allowed. We thereby provide a useful benchmark for understanding the role of 
money burning in Case 1 above. We expect that this result will be useful for other applications as well.

Formally, we consider in this section a restricted family of preferences, where the principal’s and the agent’s utilities 
satisfy the following equality:

w(γ ,π) = A
(
b(π) + B(γ ) + C(γ )π

)
(6)

for all γ and π , and for some functions B and C and some constant A. Amador and Bagwell (2013) also consider this 
family of preferences when establishing necessary conditions for the optimality of interval delegation. As they discuss, this 
restricted class of preferences includes the standard quadratic preferences used in the delegation literature as well as the 
preferences that Amador et al. (2006) analyze.

To define the candidate interval allocation, we assume that there exists a γH ∈ (γ , γ ) that is the solution to the following 
equation:

γ∫
γH

wπ (γ ,π f (γH )) f (γ )dγ = 0 (7)

We now define the interval allocation, π
 , that offers flexibility below γH and imposes a cap above γH :

π
(γ ) =
{
π f (γH ) for γ > γH

π f (γ ) for γ ≤ γH

We note that π
 is an interval allocation that takes the particular form of a cap allocation.
The delegation problem when money burning is not allowed is formally defined by Problem (P) under the further re-

quirement that t(γ ) ≡ 0. For a family of preferences, Amador and Bagwell (2013) establish sufficient conditions under which 
the interval allocation π
 is optimal for this problem. Under the preference restriction (6), Amador and Bagwell (2013)’s 
sufficient conditions for the optimality of π
 for the delegation problem when money burning is not allowed take the 
following form:

(c1) A F (γ ) − vπ (γ , π f (γ )) f (γ ) is non-decreasing for all γ ∈ [γ , γH ].
(c2) if γH < γ ,

(γ − γH )A ≥
γ∫

γ

wπ (γ̃ ,π f (γH ))
f (γ̃ )

1 − F (γ )
dγ̃ , ∀γ ∈ [γH , γ ]

with equality at γH .
(c3) vπ (γ , π f (γ )) ≤ 0.

In writing (c1), (c2) and (c3) in this way, we have used the fact that κ , as defined in Amador and Bagwell (2013), equals 
A, given the preference restriction (6). We have also used the definition for v(γ , π(γ )) given above and under which 
wπ (γ , π f (γ )) = vπ (γ , π f (γ )).

We now have the following lemma, showing that if condition (c1) holds globally for the entire domain of γ ∈ [γ , γ ], 
then condition (c2) holds as well:
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Lemma 1. Under the preference restriction (6), if A F (γ ) − vπ (γ , π f (γ )) f (γ ) is non-decreasing for all γ ∈ [γ , γ ], then condition 
(c2) holds.

Proof. In Appendix F. �
For applications, it may be easier to confirm that condition (c1) holds globally than to verify directly that condition (c2) 
holds.20 Lemma 1 then offers an easier-to-check sufficient condition for the optimality of interval delegation when money 
burning is not allowed.

We now provide a no-money-burning benchmark finding that may be compared with our Case 1 characterization for 
the setting with money burning. From Assumption 2 we have that Assumption 2ii is the same as condition (c3). We also 
have that if Assumption 2i holds and Assumption 2iii part (d) holds globally, then condition (c1) holds for all γ for the 
preference specification (6), as A ≥ 1 in this case. We may now use Lemma 1 to obtain the following result:

Lemma 2. Suppose that Assumption 2i holds, Assumption 2ii holds, and Assumption 2iii part (d) holds for all γ . Suppose as well that 
(6) holds and that γH is given by (7). Then the interval allocation, π
 is optimal for the delegation problem when money burning is not 
allowed.

Proof. In Appendix G. �
Referring to Proposition 1, we see that the interval allocation π
 is similar to the money burning allocation 

(πx(γ ), tx(γ )), in that both allocations grant full flexibility (with no money burning) for low values of γ . For higher values 
of γ , however, the money burning allocation (πx(γ ), tx(γ )) provides for higher actions that are paired with money burning 
expenditures whereas the interval allocation simply imposes a hard cap against higher actions. Based on this comparison, 
we conclude that the use of money burning is attractive, because it provides an incentive-compatible means for the agent 
that observes higher values for γ to select actions that rise somewhat with γ .

5. Cooperation and delegation

As discussed in Example 1, our results can be used to analyze cooperation among two players. The players select a 
menu of permissible actions and associated money burning levels with the objective of maximizing the ex ante sum of 
their welfares and with the understanding that one of the players will later observe the state of nature and select an action 
from the menu. The player who observes the state and takes the action is the agent, and for convenience we refer to the 
other player as the “partner.” The principal’s objective in this context is to maximize the ex ante sum of the agent’s and 
partner’s welfare functions. In this section, we use the propositions above to characterize the optimal delegation contract in 
this setting while allowing for general (non-quadratic) welfare functions and distribution functions. A key ingredient in our 
analysis is the assumption that the players’ welfare functions take related, but distinct, forms; specifically, the agent and 
partner agree on the benefits generated by an action for any given state, but the partner experiences a higher marginal cost 
from the action than does the agent.21

As one example of such a situation, we can imagine a co-author pair that seeks to determine an amount of time to 
devote to a new research project. One of the co-authors, the agent, has better information about the potential promise of 
the project, but the other coauthor, the partner, has technical expertise and expects to provide the majority of the effort 
for any investment. As another example, this time in the commercial context, the agent may be an entrepreneur with a 
start-up idea. The entrepreneur has superior information as to the potential value of the idea but requires the assistance 
of a talented engineer. The engineer, who is the partner in this case, may have a higher opportunity cost of time and thus 
anticipate bearing a disproportionate cost for any investment in the project. In both of these examples, the partner may be 
reluctant to “buy in” to plans for a big investment unless the agent undertakes sufficient persuasion or lobbying costs.

To give a concrete illustration of how such examples can be formally captured by our general analysis, we consider in 
more detail the start-up example.

The start-up example In this example, an agent with an start-up idea approaches a partner about the possibility of devel-
oping the idea together. The agent and partner share any resulting revenues equally, but the opportunity cost of time spent 
on the project is higher for the partner. The magnitude of investment in the project, π ∈ [0, π ], corresponds to the level of 

20 In subsequent work, Amador et al. (2018) build on Lemma 1 in their analysis of interval delegation. We exploit a similar idea in Amador and Bagwell 
(2020) in the specific context of a regulation problem for a family of demand functions.
21 The cooperation model considered here is similar to the trade-agreement applications considered by Amador and Bagwell (2013), in the broad sense 

that in both cases the objective is to maximize the ex ante sum of welfares for two players. The welfare functions in the trade applications considered by 
Amador and Bagwell (2013), however, are significantly different from those considered here. In those trade applications, the function v depends on π but 
is independent of γ , and the function v is also strictly convex in π . Thus, they do not satisfy Assumptions 2 and 3 above and hence are not captured by 
the cooperation model.



M. Amador, K. Bagwell / Games and Economic Behavior 121 (2020) 382–412 393
output for the start-up. The agent has private information about a state variable, γ ∈ [γ , γ ], that affects the demand for the 
project’s output.22

The rest of start-up example is specified as follows. The inverse demand function for the project’s output is represented 
as P (γ , π) = 2(γ −k(π)), where k(π) is twice continuously differentiable with k′(π) > 0, k(0) = 0, and γ > k(π), the latter 
guaranteeing that P (γ , π) > 0 for all γ and π . The agent and partner equally split the resulting revenue, P (γ , π)π . Their 
costs, however, are asymmetric. The cost of producing π units is αc(π) for the agent and (1 − α)c(π) for the partner, 
where α ∈ (0, 1/2). We may think of c(π) as the time required from each of the two players to make π units, where the 
opportunity cost (e.g., in the form of lost wages) is higher for the partner.23

We can represent the payoffs for this example as follows. The payoff to the agent is given as 1
2 P (γ , π)π − αc(π) − t , or 

equivalently

−k(π)π − αc(π) + γπ − t,

where t represents the level of money burning. The payoff to the partner is given as 1
2 P (γ , π)π − (1 − α)c(π), or equiva-

lently

−k(π)π − (1 − α)c(π) + γπ.

Finally, the payoff to the principal, which corresponds to the sum of the two players’ payoffs, is given as

−2k(π)π − c(π) + 2γπ − t.

This start-up example fits within the payoff structure for the cooperation model, which we introduce next.

5.1. The cooperation model

We now define the cooperation model. For this model, the agent’s welfare function is given as β(π) − αc(π) + γπ − t , 
from which it follows that the function b(π) is captured here as

b(π) = β(π) − αc(π).

The partner’s welfare function is related, but distinct, and takes the form

v(γ ,π) = β(π) − (1 − α)c(π) + γπ.

Summing the agent and partner’s welfare functions, we obtain the joint welfare function as 2β(π) − c(π) + 2γπ − t . It 
follows that the principal’s welfare function, w(γ , π) − t , is represented here as

w(γ ,π) − t = 2β(π) − c(π) + 2γπ − t.

We assume that α ∈ (0, 1/2), and refer to this model as the cooperation model.
For both the agent and partner, we may interpret β(π) + γπ as capturing the benefit of the action π for a given state 

γ . The marginal cost of π , however, is higher for the partner, since α ∈ (0, 1/2). The state variable γ is privately observed 
by the agent at the time that an action is selected. The state may be observed by the partner as well before payoffs are 
realized, but in any case we follow the delegation literature and assume it is infeasible to write contracts that are contingent 
on the state. For example, γ may not be verifiable.

We maintain the following assumptions for the cooperation model:

Assumption 4. In the cooperation model, γ ∈ � ≡ [γ , γ ] and π ∈ � ≡ [0, π ] where ∞ > γ > γ > 0 and ∞ > π > 0. The 
functions β(π) and c(π) are twice continuously differentiable in π . We impose that c′(π) ≥ 0, β ′′(π) < 0 and c′′(π) > 0
for all π ∈ �; and we also impose that

β ′(0) − αc′(0) + γ > 0 > β ′(π) − αc′(π) + γ . (8)

The convexity assumptions for β(π) and c(π) together with inequality (8) guarantee that the flexible allocation π f (γ ), 
which solves

b′(π) + γ ≡ β ′(π) − αc′(π) + γ = 0,

22 It is also possible that the principal observes the state γ before the payoffs are realized. In that case, we assume that γ is not verifiable, so that a state 
contingent contract cannot be enforced by an external authority.
23 Our assumptions for the function c(π) are presented below for the cooperation model, which captures the start-up example as a special case.
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is unique, interior to �, and strictly increasing.24 Note also that b(π) and w(γ , π) are strictly concave functions of π . 
Hence, the above implies that Assumption 1 holds for the cooperation model.

The start-up example Within the cooperation model, the start-up example fits by letting β(π) = −k(π)π . In this case, 
Assumption 4 is satisfied if β ′′(π) = −k′′(π)π − 2k′(π) < 0 for all π ∈ �, and

−αc′(0) + γ > 0 > −k′(π)π − k(π) − αc′(π) + γ , (9)

the latter guaranteeing that inequality (8) holds.25

5.2. Results

We now develop the applications of our propositions to the cooperation model. We consider conditions for the cooper-
ation model under which Assumption 2 holds and thus Proposition 1 may be applied. We also consider conditions under 
which Assumption 3 holds and thus Proposition 2 may applied. In addition, we discuss for each case how the optimal del-
egation contract responds as α is varied. For each case, we discuss as well the corresponding implications for the start-up 
example.

We observe first that v(γ , π) is strictly concave in π . The cooperation model thus satisfies part (i) of Assumptions 2 and 
3.26

Money burning: Case 1
We consider then the conditions for the cooperation model under which the rest of Assumption 2 holds so that Propo-

sition 1 may be applied. The corresponding Case 1 solution is depicted in Fig. 1 above.
Note that

vπ (γ ,π f (γ )) = β ′(π f (γ )) − (1 − α)c′(π f (γ )) + γ

= (2α − 1)c′(π f (γ )) < 0.

This means that, from the partner’s perspective, the agent is biased toward actions that are too high. The cooperation model 
thus also satisfies part (ii) of Assumption 2. The remaining task is to address part (iii) of Assumption 2.

Before stating our finding, we require a definition. For any γ ∈ �, we define x(γ ) by

vπ (γ , x(γ )) f (γ ) = F (γ ) − 1. (10)

We may now report the following result:

Corollary 2. Consider the cooperation model with (1 − 2α)c′(π f (γ )) < 1/ f (γ ). Let x(γ ) satisfy (10). Then, there exists γx ∈ (γ , γ )

such that x(γ ) ≤ π f (γ ) for all γ > γx with equality at γx. If f ′(γ ) ≤ 0 for γ ∈ [γx, γ ] and

f (γ )

(
β ′′(π f (γ )) − (1 − α)c′′(π f (γ ))

β ′′(π f (γ )) − αc′′(π f (γ ))

)
≥ (2α − 1)c′(π f (γ )) f ′(γ ) for γ ∈ [γ ,γx), (11)

then the allocation (πx(γ ), tx(γ )) identified in Proposition 1 is optimal.

Proof. In Appendix H.

The conditions in Corollary 2 are sure to hold if the density is non-increasing (e.g., a uniform distribution) and α is not 
too far below 1/2. Thus, when the density is non-increasing, if the partner does not bear too much of an additional cost 
burden, then the optimal allocation gives the agent flexibility for states below a critical level, γx , and otherwise allows the 
agent to select actions higher than that preferred under the critical state provided that money burning occurs. We note that 
strictly positive money burning is used if the density is strictly decreasing for γ > γx , so that x(γ ) is strictly increasing. 
Actions strictly above the critical action, π f (γx), then may occur, with strictly higher actions requiring strictly higher money 

24 For the latter, note that

π ′
f (γ ) = −1

β ′′(π f ) − αc′′(π f )
> 0.

25 Note that a sufficient condition for β ′′(π) < 0 is that k′′(π) ≥ 0. If c′(0) = 0, then the first inequality of (9) is automatically satisfied given that γ > 0. 
Finally, note that the inequalities in (9) and the requirement that γ > k(π) can simultaneously hold.
26 Similarly, part (i) of Assumption 5 in Appendix D is satisfied.
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burning expenses. We also note that inequality (11) corresponds to Assumption 2iii part (d) stated in the context of the 
cooperation and delegation model.

With a strengthening of the conditions in Corollary 2, we can report simple comparative statics results for the coopera-
tion model. In particular, if Corollary 2 is strengthened with the further assumptions that f ′(γ ) ≤ 0 and x′(γ ) < π ′

f (γ ) for 
γ ∈ (γ , γ ), then straightforward calculations confirm that ∂x(γ )/∂α > 0 and ∂γx/∂α > 0 for γ ∈ (γ , γ ) and α ∈ (0, 1/2). 
Thus, as α rises, the money burning region, γ ∈ (γx, γ ], shrinks, indicating a reduction in the ex ante probability of money 
burning. Further, in the limit as α approaches 1/2 from below, x(γ ) approaches π f (γ ) and thus γx approaches γ . Intu-
itively, as α rises toward 1/2, the preferences of the agent and partner are better aligned, and the money burning region is 
then correspondingly reduced. In the limiting case where α = 1/2, the agent would have no bias and should have discretion 
across the full support. This outcome obtains when γx = γ . A formal statement and proof of our comparative statics results 
relating to Corollary 2 may be found in Appendix J.

The start-up example To apply Corollary 2, we may consider a simple quadratic version of the start-up example. This version 
features a linear inverse demand function and a quadratic cost function with rising marginal costs. Specifically, let κ(π) = π

so that β(π) = −π2, and let c(π) = (η/2)π2 where η > 0. If π(2 + αη) > γ > γ > π > 0, then our earlier requirements on 
the inverse demand function and Assumption 4 both hold. Simple calculations reveal that

π f (γ ) = γ

2 + αη
and x(γ ) =

1−F (γ )

f (γ )
+ γ

2 + (1 − α)η
.

Turning to the sufficient conditions stated in Corollary 2, we note that (1 − 2α)c′(π f (γ )) < 1/ f (γ ) holds here if

(1 − 2α)ηγ /(2 + αη) < 1/ f (γ )

while the inequality given by (11) requires

f (γ )(2 + (1 − α)η) ≥ (2α − 1)ηγ f ′(γ )

for all γ ∈ [γ , γx]. As anticipated, both of these inequalities are clearly satisfied when α is sufficiently close to 1/2.

Money burning: Case 2
We consider next the allocation featured in Proposition 2 and depicted as the Case 2 solution in Fig. 2 above. This 

solution is optimal if Assumption 3 holds, where we know from above that part (i) of this assumption holds. As noted 
following the proof of Proposition 2, we provide in Appendix D a set of sufficient conditions that are easier to check, but 
less general, than those in Assumption 3. Using these conditions, we find that:

Corollary 3. Consider the cooperation model. Let x(γ ) satisfy (10) and assume x(γ ) > 0. If (1 − 2α)c′(x(γ )) < 2(γ − E(γ )) and, for 
all γ ∈ �, f ′(γ ) < 0 and (1 − F (γ ))/ f (γ ) < (1 −2α)c′(x(γ )), then there exists γy ∈ (γ , γ ) such that the allocation (πy(γ ), t y(γ ))

identified in Proposition 2 is optimal.

Proof. In Appendix I.

The conditions in Corollary 3 cannot hold when α is too close to 1/2 and thus direct attention to settings in which the 
partner bears a significantly higher cost burden. Under the conditions given in Corollary 3, the optimal allocation imposes 
a cap on actions unless money burning occurs. An agent that observes a state below a critical level, γy , selects the capped 
action and avoids money burning, while an agent that observes a state above this critical level selects a higher action and 
engages in money burning. Above the critical state, strictly higher actions require strictly higher money burning expenses.

We make two further points about the conditions in Corollary 3. First, our assumption that x(γ ) > 0 can be stated in 
terms of model primitives and holds if

vπ (γ ,0) = β ′(0) − (1 − α)c′(0) + γ > − 1

f (γ )
.

Second, given that c′′(π) > 0, the conditions in Corollary 3 are mutually consistent only if (1 − F (γ ))/ f (γ ) < 2(γ − E(γ )) for 
all γ ∈ �. A simple example that satisfies this inequality is f (γ ) = a −dγ where 2/(γ −γ )2 > d > 0, a = 1

γ −γ + 1
2 (γ +γ )d.

We can also report simple comparative statics results for the cooperation model when the setting described by Corol-
lary 3 holds. Specifically, under the assumptions given in Corollary 3, we find that ∂γy/∂α < 0 holds. Hence, for the setting 
described in Corollary 3, as α rises, the money burning region, γ ∈ (γy, γ ], expands, implying an increase in the ex ante 
probability of money burning. This finding contrasts interestingly with the comparative statics results associated with Corol-
lary 2. For the setting described in Corollary 3, we also find that an increase in α leads to a reduction in the pooling 
value x(γy) that is selected in the region without money burning. Our comparative statics results relating to Corollary 3 are 
formally stated and proved in Appendix J.
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The start-up example To apply Corollary 3, we again consider the simple quadratic version of the start-up example discussed 
in Case 1 above. Recall that κ(π) = π , β(π) = −π2, and c(π) = (η/2)π2 for η > 0. Let us consider the case where γ =
2, γ = 1, and f (γ ) = 1 + (3/2 − γ )d for d ∈ (0, 2). Setting π ∈ (2/(2 + αη),1) guarantees that Assumption 4 and the 
requirements on the inverse demand hold. (Note that it is always possible to choose such a π , as the set is non-empty.)

If (2 + d)η < 4, then the conditions for Corollary 2 hold for all α ∈ (0, 1/2), and the conditions for Corollary 3 cannot be 
satisfied.

If (2 + d)η > 4, then there exist α0, α1 ∈ [0, 1/2) with α0 < α1 such that the conditions for Corollary 2 hold for α ∈
(α1, 1/2); and the conditions for Corollary 3 hold for α ∈ (α0, α1). If, in addition, η > 2(6 + d)/(6 − d), then α0 = 0, and 
Corollaries 2 and 3 encompass the full range of α.27 This justifies our focus on Proposition 1 and 2, as these propositions 
provide a full characterization of the optimal contract in this region.

With respect to comparative statics, note that as α increases in the interval (α0, α1), γy decreases, expanding the range 
of γ where money is burned. However, as α increases in the interval (α1, 1/2), γx increases, decreasing the range of γ
where money burning is used. Hence, the ex ante probability of using money burning is non-monotonic with respect to α. 
We can show that at the point where the behavior with respect to α changes, that is when α = α1, the respective limits of 
γx and γy coincide and equal γ = 1. As a result, the limits of the allocations described by Corollaries 2 and 3 are the same, 
with πx(γ ) = πy(γ ) = x(γ ) for all γ ∈ �. Note that this is a situation where money burning is used over the entire range 
of γ , except at the lower bound γ .28

No money burning benchmark
Finally, let us briefly discuss the case when money burning is not allowed. As a general matter, the welfare functions for 

the cooperation model need not satisfy the preference restriction (6); however, if there exist constants C1, C2 and C3 such 
that the relationship c(π) = C1β(π) + C2π + C3 holds, then it can be shown that the preference restriction (6) is satisfied. 
So, when the welfare functions for the cooperation model satisfy this relationship, it is possible to apply the results of 
Lemma 2. One example for which this relationship holds is when c(π) and β(π) are quadratic, a case that we explore in 
Section 6.

6. Quadratic welfare and general distributions

As discussed in Example 2 above, Ambrus and Egorov (2017) analyze a delegation problem with a principal and a 
privately informed agent, where the contract specifies incentive-compatible actions and money burning levels for the agent. 
The model includes an initial transfer payment between the principal and agent that is used to satisfy the agent’s ex ante 
participation constraint. The contract must then compensate the agent for expected money burning expenses under the 
proposed contract.29 Their model thus fits into the framework that we analyze here, since the principal incurs the money 
burning expense as well.

Ambrus and Egorov (2017) explicitly solve for optimal contracts in the quadratic-uniform model, in which the principal 
and agent have quadratic utility functions and the type is distributed uniformly over [0, 1]. The quadratic-uniform model 
is commonly used in the delegation literature, and Ambrus and Egorov (2017) generalize this model to include an extra 
parameter that determines the relative importance in monetary terms of the action choice for the principal and agent. 
Ambrus and Egorov (2017) then provide a first explicit characterization of solutions to the optimal delegation problem in a 
continuous setting that include actual money burning.

Our main goal in this section is to illustrate the value of our propositions by capturing and then generalizing the corre-
sponding results on optimal delegation with money burning by Ambrus and Egorov (2017). Specifically, we generalize the 
results to families of distributions functions. An additional goal is to apply the simple sufficient conditions developed in 
Section 4 to characterize optimal delegation when money burning is infeasible and compare this solution with that which 
occurs in Case 1 when money burning is feasible.

6.1. Ambrus and Egorov’s quadratic-uniform model

In the quadratic-uniform model considered by Ambrus and Egorov (2017), the welfare function for the agent is given as

ũ(γ ,π) ≡ −[π − (γ + β)]2 − t̃(γ ),

where ̃t(γ ) is a money burning variable and 0 < β < 1.30 The welfare function for the principal is defined as

27 The particular description of the interval is given by α0 = max
{

(6−d)−2(6+d)η
(18−d)η ,0

}
and α1 = (2+d)η−4

2(3+d)η where 0 ≤ α0 < α1 < 1/2 if (2 + d)η > 4.
28 In addition, consider the case where η < 2(6 + d)/(6 − d). Then α0 > 0. In this case, when α ↓ α0, then γy → γ = 2. Hence, the limit of allocation 

described by Corollary 3 corresponds to full pooling of all types with no money burning required. We conjecture that for values of α ∈ (0, α0), full pooling 
(with no money burning) remains optimal in this case.
29 We focus on the case where the initial transfer payments are unrestricted. Transfers between the principal and agent are otherwise infeasible. Ambrus 

and Egorov (2017) also allow for the possibility that the initial transfer is restricted. In an extension, they consider as well a situation where limited 
contingent transfers are allowed.
30 Ambrus and Egorov (2017) also discuss the case where β ≥ 1.
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ṽ(γ ,π) ≡ −α[π − γ ]2,

where α > 0 is a parameter that determines the relative importance of the selected action to the principal and agent. The 
delegation problem thus features positive bias, in that the agent’s flexible action, π f (γ ) = γ + β , exceeds the principal’s 
ideal action, π = γ . As discussed in Example 2, if an ex ante transfer payment p is available and the agent faces an ex ante 
participation constraint, then we may follow Ambrus and Egorov (2017) and specify a program in the form of (P) in which 
the principal seeks to maximize the expected value of

w̃(γ ,π) − t̃(γ ) ≡ −{α[π − γ ]2 + [π − (γ + β)]2} − t̃(γ ).

Dividing by two, ignoring constants and defining t(γ ) ≡ t̃(γ )/2, we can now map the quadratic-uniform model studied 
by Ambrus and Egorov (2017) into our Problem (P) by specifying that

w(γ ,π) = −α + 1

2

(
π − γ − β

α + 1

)2

; u(γ ,π) = γπ + b(π); and b(π) = βπ − π2

2

where the function u denotes the agent’s utility function and where, as noted above, α > 0 and 0 < β < 1.31 Recall further 
that

v(γ ,π) ≡ w(γ ,π) − (γ π + b(π)).

Using π f (γ ) = γ +β , we may easily verify that vπ (γ , π f (γ )) = −αβ < 0. It is also straightforward to confirm that v(γ , π)

is strictly concave in π . Finally, for all γ ∈ �, we may define x(γ ) by vπ (γ , x(γ )) f (γ ) = F (γ ) −1, which under the quadratic 
preferences considered here yields the closed-form solution

x(γ ) = 1

α

(
1 − F (γ )

f (γ )
+ αγ

)
. (12)

Using our propositions, we can capture Ambrus and Egorov (2017)’s corresponding characterizations for the quadratic-
uniform model. To this end, we now follow Ambrus and Egorov (2017) and further specify that the distribution is uniform, 
with F (γ ) = γ , γ = 0 and γ = 1. When α ≤ 1, Amador and Bagwell (2013) use part b of their Proposition 1 to show 
the optimality of a cap allocation with full flexibility up to the critical type γH = 1 − 2αβ/(1 + α). For α > 1, we use 
our propositions to fully characterize optimal delegation contracts, where we note using (12) that the function x takes the 
simple form x(γ ) = γ + (1 − γ )/α under the assumed uniform distribution.

Specifically, 1 < α ≤ 1
β

we can use our Proposition 1 to show that the money burning allocation

πx(γ ) =
{
π f (γ ) ;γ ≤ 1 − αβ

γ + (1 − γ )/α ;γ > 1 − αβ

is optimal as Assumption 2 holds for x(γ ) = γ +(1 −γ )/α and γx = 1 −αβ . Similarly, when α > 1
β

, we can use Proposition 2
to show that the money burning allocation

πy(γ ) =
{
γy + (1 − γy)/α ;γ ≤ γy

γ + (1 − γ )/α ;γ ≥ γy

where γy = 1
α

(√
1 + 2α

α−1 (αβ − 1) − 1
)

∈ (0, 1) is optimal as Assumption 3 holds for x(γ ) = γ + (1 − γ )/α.

6.2. Applying Lemma 2: simple sufficient conditions

Since the quadratic-uniform model satisfies the preference restriction given in (6), vππ (γ , π) < 0 and vπ (γ , π f (γ )) < 0, 
we can now apply the simple sufficient conditions identified in Lemma 2. This application confirms the value of Lemma 2: 
for the uniform-quadratic model, once we solve the simple first order condition (7) for γH = 1 − 2αβ/(1 + α), we can 
immediately identify conditions under which the cap allocation π
 is optimal for the delegation problem when money 
burning is infeasible.32 Specifically, using α > 0, β > 0 and that F (γ ) − vπ (γ , π f (γ )) f (γ ) = F (γ ) + αβ f (γ ) is obviously 
non-decreasing for all γ ∈ � when the distribution function is uniform with F (γ ) = γ , γ = 0 and γ = 1, we can employ 
Lemma 2 to confirm the optimality of π
 for the delegation problem when money burning is not allowed. We observe that 
γH ∈ (0, 1) under the further constraint that 2αβ < 1 + α.

31 This representation is also described in the Online Appendix of Amador and Bagwell (2013).
32 As noted previously, Amador and Bagwell (2013) establish that the quadratic-uniform model satisfies the preference restriction given in (6). The specific 

values for A, B(γ ) and C(γ ) are A = 1 +α, B(γ ) = −[γ +β/(1 +α)]2/2 and C(γ ) = γ −αβ/(1 +α). Amador and Bagwell (2013) consider the case where 
α ≤ 1, for which money burning is not used even when it is allowed.
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Fig. 3. Comparison for the Quadratic-Uniform model: Case 1.

With this benchmark established, we may now compare the optimal delegation contract when money burning is allowed 
with that when it is not. Following the results described just above, when 1 < α < 1

β
we can use our Proposition 1 to show 

that the allocation πx(γ ) is optimal when money burning is allowed, as Assumption 2 holds for x(γ ) = γ + (1 − γ )/α
and γx = 1 − αβ ∈ (0, 1).33 Notice, too, that 1 < α < 1

β
implies 2αβ < 1 + α, so that the further constraint mentioned in 

the previous paragraph holds automatically. Simple calculations now yield that γH − γx = αβ(α − 1)/(1 + α) > 0 and that 
x(γ ) − π f (γH ) = β(α − 1)/(1 + α) > 0.

For the quadratic-uniform model with 1 < α < 1
β

, Fig. 3 illustrates the optimal delegation contracts when money burning 
is allowed and when it is not. For the lowest states, both contracts give full flexibility to the agent. For intermediate and 
high states, however, the use of money burning enables the agent to select actions that rise with the state but are less than 
the agent’s preferred action. Furthermore, when money burning is allowed, the agent’s action for intermediate (high) states 
is below (above) the optimal cap that obtains when money burning is infeasible.

6.3. Generalizations

We now further illustrate how our propositions can be easily applied to obtain new results. In what follows, we maintain 
the quadratic preferences of Ambrus and Egorov (2017) but relax their uniform distribution assumption. We refer to the 
resulting model as the generalized Ambrus and Egorov (2017) quadratic model.

When α ≤ 1, Amador and Bagwell (2013) use part (b) of their Proposition 1 to establish a family of distribution functions 
under which a cap allocation is optimal. When 1 < α ≤ 1

β f (γ )
, we can use Proposition 1 to obtain conditions under which a 

money burning allocation is optimal:

Corollary 4. Consider the generalized Ambrus and Egorov (2017) quadratic model with 1 < α ≤ 1
β f (γ )

. For all γ ∈ �, let x(γ ) be 

defined by (12). Then, there exists γx ∈ [γ , γ ) such that x(γx) = π f (γx). If (i) 1−F (γ )

f (γ )
≤ αβ for γ ∈ [γx, γ ], (ii) 1−F (γ )

f (γ )
+ αγ is 

non-decreasing for γ ∈ [γx, γ ], and (iii) F (γ ) + αβ f (γ ) is non-decreasing for γ ∈ [γ , γx), then the allocation πx:

πx(γ ) =
{
π f (γ ) ; ∀γ ≤ γx

x(γ ) ; ∀γ > γx

is optimal.

Proof. In Appendix K. �
The conditions in Corollary 4 are satisfied for the uniform distribution, but also include a large family of non-uniform 

distributions as well. To illustrate, we consider a family of linear densities: f (γ ) = a +2(1 −a)γ where γ is distributed over 
[0, 1] and a ∈ (0, 2). This family includes the uniform density (a = 1), increasing densities (a < 1) and decreasing densities 
(a > 1). As we show in Appendix M, if α > 1 and 1 ≥ aαβ , then all of the conditions of Corollary 4 are satisfied.

We conclude with the characterization of the last parameter region, α > 1
β f (γ )

, where we can use Proposition 2 to show 
that an allocation with money burning is optimal:

33 It is straightforward to show that in this case, t(γ ) is strictly positive and strictly increasing for γ > γx .
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Corollary 5. Consider the generalized Ambrus and Egorov (2017) quadratic model with α > 1
β f (γ )

. For all γ ∈ �, let x(γ ) be defined 

by (12). If (i) 1−F (γ )

f (γ )
+ αγ is strictly increasing for γ ∈ �, (ii) 1−F (γ )

f (γ )
≤ 1

f (γ )
for γ ∈ �, and (iii) (1 + α)(γ −E[γ ]) > β , then an 

allocation of the form

πy(γ ) =
{

x(γy) ; ∀γ ≤ γy

x(γ ) ; ∀γ > γy

for some γy ∈ (γ , γ ) is optimal.

Proof. In Appendix L. �
As an illustration of a non-uniform distribution that satisfies the assumptions of Corollary 5, consider the linear density 

f (γ ) = a + 2(1 − a)γ where γ is distributed over [0, 1] and a ∈ [1, 2). The assumption that α > 1/(β f (γ )) and assumption 
(iii) of Corollary 5 hold if 1 < aαβ and a > 6β/(1 + α) − 2, respectively. These inequalities can simultaneously hold if 
α ≥ 1/2. As we show in the Appendix M, assumptions (i) and (ii) of Corollary 5 hold for this distribution when a ∈ [1, 2).

7. Conclusions

We consider a general representation of the delegation problem with money burning, and we characterize optimal so-
lutions to the delegation problem in which actual money burning occurs. The solutions that we identify are motivated by 
the findings that Ambrus and Egorov (2017) develop for a setting with quadratic payoffs and a uniform distribution. Using 
and extending the Lagrangian methods developed by Amador et al. (2006) and Amador and Bagwell (2013), we are able to 
establish conditions on welfare and distribution functions under which money burning is optimal. To better understand the 
role of money burning, we also establish simple sufficient conditions for the optimality of interval delegation in the form 
of a cap allocation under a restricted set of preferences for a benchmark setting in which money burning is not allowed. In 
addition, we illustrate the value of our propositions by applying them to a specific model of cooperation and delegation and 
by generalizing the corresponding findings of Ambrus and Egorov (2017) for the quadratic-uniform model to include fami-
lies of distribution functions. For one case in the quadratic-uniform model, we also apply our simple sufficient conditions to 
characterize optimal delegation when money burning is infeasible and compare this solution with that which occurs when 
money burning is feasible. We expect that our techniques and solutions will also be useful for other studies of applied 
mechanism design when contingent transfers are infeasible and wasteful actions may be used to provide incentives.

Appendix A. A modified version of Luenberger’s Sufficiency Theorem

Here we restate, from Amador and Bagwell (2013), a slightly modified version of Theorem 1 in section 8.4 of Luenberger 
(1969) that makes explicit the complementary slackness condition:

Theorem 1. Let f be a real valued functional defined on a subset � of a linear space X. Let G be a mapping from � into the linear 
space Z having non-empty positive cone P . Suppose that (i) there exists a linear function T : Z →R such that T (z) ≥ 0 for all z ∈ P ,
(ii) there is an element x0 ∈ � such that

f (x0) + T (G(x0)) ≤ f (x) + T (G(x)), for all x ∈ �,

(iii) −G(x0) ∈ P , and (iv) T (G(x0)) = 0. Then x0 solves:

min f (x) subject to: − G(x) ∈ P , x ∈ �

Proof. For completeness, we restate the proof done in Amador and Bagwell (2013). Note that from (ii) and (iii), x0 is in 
the constraint set of the minimization problem. Suppose that there exists an x1 ∈ � with f (x1) < f (x0) and −G(x1) ∈ P , so 
that x0 is not a minimizer. Then, by hypothesis (i), T (−G(x1)) ≥ 0. Linearity implies that T (G(x1)) ≤ 0. Using this together 
with (iv), it follows that f (x1) + T (G(x1)) < f (x0) = f (x0) + T (G(x0)), which contradicts hypothesis (ii). �
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Appendix B. Proof of Proposition 1

We begin by taking the expression for the Lagrangian in (4) and integrating by parts.34 Setting �(γ ) = 1 without loss of 
generality, we get:

L(π, t(γ )|�) ≡
∫

γ ∈�

(
v(γ ,π(γ )) f (γ ) + (�(γ ) − F (γ ))π(γ )

)
dγ (13)

+
∫

γ ∈�

(γ π(γ ) + b(π(γ )))d�(γ ) + �(γ )U .

A proposed multiplier. Our Lagrange multiplier for this case takes the following form35:

�(γ ) =

⎧⎪⎨⎪⎩
0 ; f or γ = γ

F (γ ) − vπ (γ ,π f (γ )) f (γ ) ; f or γ ∈ (γ ,γx]
1 ; f or γ ∈ (γx, γ ].

Monotonicity of the Lagrange multiplier. Using Assumption 2iii parts (a), (d) and the equality condition of part (b), we have 
that � is non-decreasing for all γ ∈ (γ , γ ). The Lagrange multiplier has a jump at γ which equals −vπ (γ , π f (γ )) f (γ )

which is non-negative by Assumption 2ii.

Concavity of the Lagrangian. Given our proposed multiplier, it follows that U drops from equation (13). Concavity of the 
Lagrangian in π follows from � non-decreasing and Assumption 2i which guarantees concavity of v in π .

Maximizing the Lagrangian. We now proceed to show that the proposed allocation (πx, tx(γ )) maximizes the Lagrangian 
given our proposed multiplier function. We first note that tx(γ ) does not appear in the resulting Lagrangian. We can thus 
restrict attention to maximizing the Lagrangian over π(γ ) ∈ � ≡ {π |π : � → �; and π non-decreasing}. For this, we may 
use the sufficiency part of Lemma A.2 in Amador et al. (2006) which concerns the maximization of concave functionals in a 
convex cone.

Given that L is a concave functional on π , if π = ∞, then � is a convex cone, and so we may appeal to this lemma 
directly. We can then say that if

∂L(πx;πx|�) = 0, (14)

∂L(πx; y|�) ≤ 0, for all y ∈ �, (15)

then πx maximizes the Lagrangian, where we have suppressed notation for the money burning variable tx(γ ) and where 
the first order condition is in terms of Gateaux differentials.36 If instead π < ∞, then a bit more care is needed, but after 
invoking Assumption 1 we obtain the same result.37

34 Observe that h(γ ) ≡ ∫ γ
γ π(γ ′)dγ ′ exists (since π is bounded and measurable by monotonicity) and is absolutely continuous; and �(γ ) is a function of 

bounded variation (as it is non-decreasing over [γ , γ ]). We conclude that ∫ γ
γ h(γ )d�(γ ) exists as the Riemman-Stieltjes integral and that integration by 

parts can be done as follows: ∫ γ
γ h(γ )d�(γ ) = h(γ )�(γ ) − h(γ )�(γ ) − ∫ γ

γ �(γ )dh(γ ). Finally, since h(γ ) is absolutely continuous, we can use π(γ )dγ in 
place of dh(γ ).
35 Alternatively, we could have set �(γ ) = −vπ (γ , π f (γ )) f (γ ), and the proof would have proceeded as in Proposition 2 below.
36 Given a function T : � → Y , where � ⊂ X and X and Y are normed spaces, if for x ∈ � and h ∈ X the limit

lim
α↓0

1

α
[T (x + αh) − T (x)]

exists, then it is called the Gateaux differential at x with direction h and is denoted by ∂T (x;h).
37 In this case, we may follow closely the approach used in Amador and Bagwell (2013) to extend b and w to the entire positive ray of the real line in 

the following way:

ŵ(γ ,π) =
{

w(γ ,π) ; for π ∈ �

w(γ ,π) + wπ (γ ,π)(π − π) ; for π > π

for all γ ∈ � and π ∈ [0, ∞). And we similarly define b̂. These extensions are possible from the boundedness of the derivatives as stated in part (vi) of 
Assumption 1. Then we let �̂ = {π |π : � → R+ and π non-decreasing} and observe that �̂ is a convex cone. Observe also that b̂ and ŵ are continuous, 
differentiable, and concave. The next step is to define the extended Lagrangian, L̂(π |�), as in (13) but using ŵ and b̂ instead of w and b. We can now 
use Lemma A.2 in Amador et al. (2006). According to this Lemma, the Lagrangian L̂ is maximized at πx if L̂ is a concave functional defined in a convex 
cone �̂; ∂L̂(πx; πx|�) = 0; and ∂L̂(πx; y|�) ≤ 0; for all y ∈ �̂. Now note that if y ∈ �̂, then for all sufficiently small α > 0, we have that αy ∈ � and 
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Taking the Gateaux differential of the Lagrangian in the direction y ∈ � and using that b′(π f (γ )) = −γ , we get that38:

∂L(πx; y|�) =
γ∫

γx

(
vπ (γ , x(γ )) f (γ ) + (1 − F (γ ))

)
y(γ )dγ .

By Assumption 2iii part (a) it follows then that ∂L(πx; y|�) = 0 for all y, and thus the first order conditions for πx to 
maximize the Lagrangian are satisfied.

Money burning is non-negative. We now check that t(γ ) ≥ 0 for all γ . Recall that

t(γ ) = γπx(γ ) + b(πx(γ )) −
γ∫

γ

πx(γ̃ )dγ̃ − U

for all γ . Given that t(γ ) = 0 for γ ∈ [γ , γx], as the flexible allocation is offered in that region, we have that

t(γ ) =
{

0 ; for γ ∈ [γ ,γx]
γ x(γ ) − γxx(γx) + b(x(γ )) − b(x(γx)) − ∫ γ

γx
x(γ̃ )dγ̃ ; for γ ∈ (γx, γ ]

Integrating by parts the last integrand, we get that:

t(γ ) = b(x(γ )) − b(x(γx)) +
γ∫

γx

γ̃ dx(γ̃ )

for γ ≥ γx . By Assumption 2iii part (c), we know that x is monotone for γ ≥ γx . By Assumption 2iii part (b), and concavity 
of b, we know that b′(x(γ )) + γ ≥ 0. Then, it follows that

t(γ ) ≥ b(x(γ )) − b(x(γx)) −
γ∫

γx

b′(x(γ̃ ))dx(γ̃ ) = 0

for all γ ≥ γx .39

Complementary Slackness. Now we check complementary slackness which requires that∫
�

( γ∫
γ

πx(γ
′)dγ ′ + U − γπx(γ ) − b(πx(γ ))

)
d�(γ ) = 0

which follows from t(γ ) = 0 for γ ∈ [γ , γx] and �(γ ) = 1 for γ ∈ [γx, γ ].

Applying Luenberger’s Sufficiency Theorem: Here we follow the exact mapping used in the proof of part (b) of Proposition 
1 in Amador and Bagwell (2013) in order to use Theorem 1 in Appendix A and show that the proposed allocation (πx, 0)

solves Problem (P’). Specifically, we set (i) x0 ≡ (πx, 0); (ii) f to be given by the negative of the objective function, f ≡
− ∫

�
(v(γ , π(γ )) f (γ ) + (1 − F (γ ))π(γ ))dγ − U ; (iii) X ≡ {π, t|t ∈ 
+, π : � → �}; (iv) Z ≡ {z|z : � → 
 with z integrable}; 

(v) � ≡ {π, t|t ∈ 
+, π : � → �; and π non-decreasing}; (vi) P ≡ {z|z ∈ Z such that z(γ ) ≥ 0 for all γ ∈ �}; (vii) G to be 
the mapping from � to Z given by the negative of the left hand side of inequality (1); (viii) T (z) to be the linear mapping:

T (z) =
∫
�

z(γ )d�(γ ),

where T (z) ≥ 0 for z ∈ P follows from � non-decreasing. We have that

∂L̂(πx; y|�) = 1
α ∂L̂(πx; αy|�). Hence, it is sufficient to check the above first order conditions for all y in �. From Assumption 1 part (iv), it follows that 

πx + αy ∈ � for all small enough α > 0, as π f is interior. Then, by the definition of the Gateaux differential, we have that ∂L̂(πx; y|�) = ∂L(πx; y|�) for 
all y ∈ �, and conditions (14)-(15) are sufficient for optimality.
38 Under Assumption 1, arguments similar to those in footnote 34 guarantee the existence of the integral in the right hand side, and Lemma A.1 in 

Amador et al. (2006) can be used to establish the existence of the Gateaux differential.
39 The last equality follows from the continuity and monotonicity of x. (See Carter and Brunt, 2000, Theorem 6.2.1 and the subsequent discussion.)
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T (G(x0)) ≡
∫
�

( γ∫
γ

πx(γ̃ )dγ̃ + U − γπx(γ ) − b(πx(γ ))
)

d�(γ ) = 0,

which follows here since t(γ ) = 0 for γ ∈ [γ , γx] and �(γ ) = 1 for γ ∈ [γx, γ ]. We have found conditions under which the 
proposed allocation, x0 ≡ (πx, 0), minimizes f (x) + T (G(x)) for x ∈ �. Given that T (G(x0)) = 0, the conditions of Theorem 1
hold and it follows that (πx, 0) solves minx∈� f (x) subject to −G(x) ∈ P , which is Problem (P). �
Appendix C. Proof of Proposition 2

Just as in the proof of Proposition 1, we begin by deriving the Lagrangian:

L(π, t(γ )|�) =
∫

γ ∈�

[
v(γ ,π(γ )) f (γ ) + (�(γ ) − F (γ ))π(γ )

]
dγ

+
∫

γ ∈�

(
γπ(γ ) + b(π(γ ))

)
d�(γ ) + �(γ )U ,

where we used without loss of generality that �(γ ) = 1. Recall that the Lagrange multiplier, �, must be non-decreasing.

A proposed multiplier and monotonicity. Our proposed Lagrange multiplier function is �(γ ) = 1 for all γ ∈ �. This function 
is trivially non-decreasing.40

Concavity of the Lagrangian. When this multiplier function is imposed, the second integral disappears, permitting the 
Lagrangian to be expressed as

L(π, t(γ )|�) =
∫

γ ∈�

[
v(γ ,π(γ )) f (γ ) + (1 − F (γ ))π(γ )

]
dγ + U . (16)

Given that v is concave under Assumption 3i and that U ≡ γπ(γ ) + b(π(γ )) − t(γ ) is concave (via b) in π(γ ) and linear 
in t(γ ), we see that L(π, t(γ )|�) is concave in the policy functions.

Maximizing the Lagrangian. Our next step then is to consider the Gateaux differentials of the Lagrangian41:

∂L(π, t; y, t0|�) =
∫

γ ∈�

[
vπ (γ ,π(γ )) f (γ ) + (1 − F (γ ))

]
y(γ )dγ + γ y(γ ) + b′(π(γ ))y(γ ) − t0

for any y : � → �, y non decreasing and t0 ≥ 0. Evaluating the Gateaux differential at the proposed allocation:

∂L(πy,0;πy,0|�) =
∫

γ ∈�

[
vπ (γ ,πy(γ )) f (γ ) + (1 − F (γ ))

]
πy(γ )dγ + γπy(γ ) + b′(πy(γ ))πy(γ )

= x(γy)

⎧⎪⎨⎪⎩
γy∫

γ

[
vπ (γ , x(γy)) f (γ ) + (1 − F (γ ))

]
dγ + γ + b′(x(γy))

⎫⎪⎬⎪⎭= 0

where we have used Assumption 3ii part (a) to obtain the second equality. The last equality follows from part (d).
The differential in any other direction is:

∂L(πy,0; y, t0|�) =
γy∫

γ

[
vπ (γ , x(γy)) f (γ ) + (1 − F (γ ))

]
y(γ )dγ + γ y(γ ) + b′(x(γy))y(γ ) − t0

= y(γy)

γy∫
γ

[
vπ (γ , x(γy)) f (γ ) + (1 − F (γ ))

]
dγ

40 It seems from this multiplier that the non-negativity constraint is not binding for all γ . If this were true, then clearly the solution should make t as 
large and negative as possible! However, recall that there is still a non-negativity constraint that is imposed through the choice set, that is, that t(γ ) ≥ 0.
41 The existence of the Gateaux differential follows the same argument as in footnote 38.
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−
γy∫

γ

{ γ∫
γ

[
vπ (γ , x(γy)) f (γ ) + (1 − F (γ ))

]
dγ

}
dy(γ )

+ γ y(γ ) + b′(x(γy))y(γ ) − t0

= −
γy∫

γ

{ γ∫
γ

[
vπ (γ , x(γy)) f (γ ) + (1 − F (γ ))

]
dγ

}
dy(γ )

− (
y(γy) − y(γ )

)(
γ + b′(x(γy))

)− t0

= −
γy∫

γ

{ γ∫
γ

[
vπ (γ , x(γy)) f (γ ) + (1 − F (γ ))

]
dγ + γ + b′(x(γy))

}
dy(γ ) − t0 ≤ 0

where the second equality follows from integration by parts (which can be done, as one of the functions involved is con-
tinuous and the other one is monotonic); and the third equality follows from using Assumption 3ii part (d). The fourth 
equality follows by just noticing that γ + b′(x(γy)) is a constant, and the last inequality follows from Assumption 3ii part 
(d) and t0 ≥ 0. Taken together, the above first order conditions imply that (πy, 0) maximizes the Lagrangian.42

Money burning is non-negative. Our next step is to show that the induced value for t(γ ) is nonnegative. Using (3), we 
have that

t(γ ) =
{

0 ; for γ ∈ [γ ,γy]
γ x(γ ) − γyx(γy) + b(x(γ )) − b(x(γy)) − ∫ γ

γy
x(γ )dγ ; for γ ∈ (γy, γ ]

The proof that t(γ ) is non-negative follows exactly the same steps as in the proof of Proposition 1, where we now use 
Assumption 3ii part (b) and (c).

Complementarity Slackness. Complementarity slackness follows from �(γ ) = 1 for all γ .

Applying Luenberger’s Sufficiency Theorem. Here we follow the exact mapping used in the proof of Proposition 1 to use 
Theorem 1 in Appendix A and show that proposed allocation (πy, 0) solves Problem (P’). �
Appendix D. Easier-to-check assumptions that imply Assumption 3

Proposition 2 is a useful proposition, but one may wonder when Assumption 3ii part (d) would hold. To address this 
concern, in this section we obtain easier-to-check conditions that deliver Assumption 3ii part (d). To this end, we state the 
following alternative assumption:

Assumption 5. The following holds:

(i) v(γ , π) strictly concave in π ;
(ii) there exists a continuous function x(γ ) such that: (a) vπ (γ , x(γ )) f (γ ) = F (γ ) − 1, for all γ ∈ �; (b) x(γ ) ≤ π f (γ ), for 

all γ ∈ � and strictly at γ ; (c) x(γ ) is strictly increasing, for all γ ∈ �; (d) E[γ ] +b′(x(γ )) +∫ γ
γ vπ (γ̃ , x(γ )) f (γ̃ )dγ̃ < 0.

This assumption is stated only in terms of the function x(γ ), which is now defined for all γ ∈ �. In effect, Assumption 5ii 
strengthens slightly parts (a), (b) and (c) of Assumption 3ii, while replacing part (d). Notice that γy does not appear in this 
assumption. We have the following result:

Proposition 3. Suppose that Assumption 5 holds. Then there exists a unique value γg ∈ (γ , γ ) such that:

γg + b′(x(γg)) +
γg∫

γ

[
vπ (γ , x(γg)) f (γ ) − F (γ )

]
dγ = 0

If vπ (γ , x(γg)) f (γ ) − F (γ ) is non-decreasing for all γ ∈ [γ , γg], then the allocation (πy(γ ), 0) with γy = γg is optimal.

42 This follows from a formal argument analogous to that in the proof of Proposition 1, which applies Lemma A.2 of Amador et al. (2006), augmented to 
allow for the presence of t0 in the Lagrangian.
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Before stating the proof, let us first define

G(γ ) ≡ γ + b′(x(γ )) +
γ∫

γ

[vπ (γ̃ , x(γ )) f (γ̃ ) − F (γ̃ )]dγ̃ .

We now have the following Lemma:

Lemma 3. Under Assumption 5, there exists a unique γg ∈ (γ , γ ) such that G(γg) = 0.

Proof. We find that:

G(γ ) = γ + b′(x(γ )) = −b′(π f (γ )) + b′(x(γ )) > 0,

where the inequality follows since x(γ ) < π f (γ ) by Assumption 5ii part (b) and since b′′ < 0. Next, we find that

G(γ ) = γ + b′(x(γ )) +
γ∫

γ

[vπ (γ̃ , x(γ )) f (γ̃ ) − F (γ̃ )]dγ̃

= E[γ ] + b′(x(γ )) +
γ∫

γ

vπ (γ̃ , x(γ )) f (γ̃ )dγ̃ < 0,

where the inequality follows from Assumption 5ii part (d). Finally, we find that, for all γ ∈ �,

G(γ ) = γ + b′(x(γ )) +
γ∫

γ

[
vπ (γ̃ , x(γ )) f (γ̃ ) + 1 − F (γ̃ )

]
dγ̃

Now note that γ + b′(x(γ )) is strictly decreasing in γ given that x is strictly increasing and b is strictly concave. Note as 
well that

γ∫
γ

[
vπ (γ̃ , x(γ )) f (γ̃ ) + 1 − F (γ̃ )

]
dγ̃ =

γ∫
γ

[
vπ (γ̃ , x(γ )) − vπ (γ̃ , x(γ̃ ))

]
f (γ̃ )dγ̃ (17)

where we have used Assumption 5ii part (a). Given that x is strictly increasing and v strictly concave, we have that 
vπ (γ̃ , x(γ )) − vπ (γ̃ , x(γ̃ )) < 0 for all γ̃ < γ . This difference strictly decreases as x(γ ) increases by strict concavity of v . 
Hence an increase in γ strictly increases x(γ ), and thus strictly reduces (17) by both increasing the support of the integral 
and by making the integrand more negative at all points.

Taken together, it follows that G is strictly decreasing in γ as it is the sum of two strictly decreasing functions. Assump-
tion 5ii guarantees that x is continuous, and hence it follows that G is continuous as well. Hence there exists a unique 
γg ∈ (γ , γ ) so that G(γg) = 0. �

Now we are ready to prove Proposition 3:

Proof. Let us define

K T (γ ) ≡ γ + b′(x(γg)) +
γ∫

γ

[vπ (γ̃ , x(γg)) f (γ̃ ) − F (γ̃ )]dγ̃ .

Observe that K T (γg) = G(γg) = 0 by Lemma 3. Note that:

K T ′(γ ) = 1 + vπ (γ , x(γg)) f (γ ) − F (γ )

which is non-decreasing for all γ ∈ [γ , γg] by the hypothesis of the Proposition. Hence K T is convex. We also know that 
K T ′(γg) = 0 by the definition of x. It follows then that γg is a minimizer of K T and thus K T (γ ) ≥ K T (γg) = 0 for all 
γ ∈ [γ , γg]. Now let γy = γg . Then we have that Assumption 3ii part (a) holds. Assumption 3ii part (b) follows from 
Assumption 5ii part (b). Assumption 3ii part (c) follows from Assumption 5ii part (c). And finally, Assumption 3ii part (d) 
follows from K T (γ ) ≥ 0 for all γ ∈ [γ , γg] and with equality at γg .

Hence Assumption 3 holds, and we can apply Proposition 2. �
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Appendix E. Proof of Corollary 1

Given the definitions of w̃(γ , π(γ )) and ̃v(γ , π(γ )), it is straightforward to verify the following convenient relationship:

ṽ(γ ,π) = 1

1 − ρ
v(γ ,π) + ρ

1 − ρ
(γ π + b(π)). (18)

We may now confirm that ṽππ (γ , π) < 0 for all ρ ∈ (0, 1). Using (18), we find that

ṽππ (γ ,π) = 1

1 − ρ
vππ (γ ,π) + ρ

1 − ρ
b′′(π).

Since Assumption 1 is maintained for the model with ρ = 0, we know that b′′(π) < 0. We also know from Assumption 2
when ρ = 0 that vππ (γ , π) ≤ 0. It thus follows that ṽππ (γ , π) < 0 for all ρ ∈ (0, 1) while ṽππ (γ , π) = vππ (γ , π) ≤ 0 for 
ρ = 0.

Recall that ̃x(γ ) solves

ṽπ (γ , x̃(γ )) f (γ ) + 1 − F (γ ) = 0 (19)

where ̃x(γ ) = x(γ ) when ρ = 0. As in the text, we suppress the dependency of ̃x(γ ) and ṽ(γ , π) on ρ . When γ = γ̃x , we 
thus have that ̃x(γ̃x) solves

ṽπ (γ̃x, x̃(γ̃x)) f (γ̃x) + 1 − F (γ̃x) = 0. (20)

Let us now fix any ρ ∈ (0, 1). Implicitly differentiating (20), we get that

∂ x̃(γ̃x)

∂ρ
= −

∂ ṽπ (γ̃x ,̃x(γ̃x))
∂ρ

ṽππ (γ̃x, x̃(γ̃x))
, (21)

where the partial derivative with respect to ρ captures the (suppressed) direct dependency of the function ṽπ (γ , π) on ρ
when the function is evaluated at γ = γ̃x and π = x̃(γ̃x). Since ̃x(γ̃x) = π f (γ̃x), we can re-state (21) as

∂ x̃(γ̃x)

∂ρ
= −

∂ ṽπ (γ̃x,π f (γ̃x))

∂ρ

ṽππ (γ̃x,π f (γ̃x))
. (22)

We now observe the following convenient property: for all ρ ∈ [0, 1) and γ ∈ �,

ṽπ (γ ,π f (γ )) = vπ (γ ,π f (γ ))

1 − ρ
. (23)

Since this property holds identically for all ρ ∈ [0, 1), we know that

∂ ṽπ (γ ,π f (γ ))

∂ρ
= vπ (γ ,π f (γ ))

(1 − ρ)2
(24)

holds for all γ ∈ �. Evaluating (24) at γ = γ̃x and substituting into (22), we get that

∂ x̃(γ̃x)

∂ρ
= −

vπ (γ̃x,π f (γ̃x))

(1−ρ)2

ṽππ (γ̃x,π f (γ̃x))
. (25)

Recall now that ṽππ (γ̃x, π f (γ̃x)) < 0 for ρ ∈ (0, 1); furthermore, given the assumption that the model exhibits positive bias 
when ρ = 0, we know that vπ (γ̃x, π f (γ̃x)) < 0. We conclude that ∂ x̃(γ̃x)

∂ρ < 0 for ρ ∈ (0, 1). The rest of the proof now follows 
immediately. �
Appendix F. Proof of Lemma 1

It is convenient to define

G̃(γ ) ≡
γ∫

γ

wπ (γ̃ ,π f (γH )) f (γ̃ )dγ̃ − (γ − γH )A(1 − F (γ )).

Now notice that (c2) can be rewritten as

(c2) G̃(γ ) ≤ 0 for γ ≥ γH , with G̃(γH ) = 0.
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We next note that G̃(γH ) = 0 = G̃(γ ), and

G̃ ′(γ ) = −[wπ (γ ,π f (γH )) − (γ − γH )A] f (γ ) − A(1 − F (γ )). (26)

Note that under the preference specification (6), wπ (γ , π f (γH ) − (γ − γH )A = wπ (γ , π f (γ )).
To see this, we use b′(π f (γ )) + γ ≡ 0, to get that

wπ (γ ,π f (γH )) − (γ − γH )A = A[b′(π f (γH )) + C(γ )] − (γ − γH )A

= A[C(γ ) − γH ] − (γ − γH )A

= A[C(γ ) − γ ]
and likewise that

wπ (γ ,π f (γ )) = A[b′(π f (γ )) + C(γ )]
= A[C(γ ) − γ ].

So we have that

G̃ ′(γ ) = A F (γ ) − wπ (γ ,π f (γ )) f (γ ) − A. (27)

Given wπ (γ , π f (γ )) = vπ (γ , π f (γ )), it follows that from (27) that, if (c1) holds globally, then G̃ ′(γ ) is non-decreasing for 
the entire domain.

Using this result and the fact that G̃(γH ) = 0 = G̃(γ ), we conclude that G̃(γ ) ≤ 0 for γ ≥ γH . Condition (c2) thus 
holds. �
Appendix G. Proof of Lemma 2

We already argue in the text that conditions (c1), (c2) and (c3) follow from the premise of the lemma. As a result, we 
can apply Proposition 1(a) from Amador and Bagwell (2013) to obtain the optimality of the interval allocation. �
Appendix H. Proof of Corollary 2

For any γ ∈ �, we define x(γ ) by (10). We seek a condition under which x(γ ) defined by (10) is interior (i.e., x(γ ) ∈
(0, π) for all γ ∈ �) and there exists γx ∈ (γ , γ ) such that x(γ ) ≤ π f (γ ) for all γ > γx with equality at γx . Under such a 
condition, Assumption 2(iii)(a) and (b) would hold. Since π f (γ ) is interior under our assumptions above, it is sufficient to 
find a condition under which the range of x(γ ) is contained within the range of π f (γ ) for γ ∈ �.

Our first step is thus to establish that x(γ ) < π f (γ ). Observe that x(γ ) and π f (γ ) respectively solve

β ′(x(γ )) − (1 − α)c′(x(γ )) + γ = 0

β ′(π f (γ )) − αc′(π f (γ )) + γ = 0.

Subtracting, we get

β ′(x(γ )) − β ′(π f (γ )) = (1 − α)c′(x(γ )) − αc′(π f (γ )). (28)

Now suppose to the contrary that x(γ ) ≥ π f (γ ). By concavity of β(π), the LHS of (28) must then be non-positive. Since 
c(π) is convex, c′(x(γ )) ≥ c′(π f (γ )) then follows. Given that α ∈ (0, 1/2), we may conclude that the RHS of (28) is positive. 
This is a contradiction, and so we conclude that x(γ ) < π f (γ ).

Our second step is to provide a condition under which x(γ ) > π f (γ ). Observe that x(γ ) and π f (γ ) respectively solve

β ′(x(γ )) − (1 − α)c′(x(γ )) = −1/ f (γ ) − γ

β ′(π f (γ )) − αc′(π f (γ )) = −γ .

Subtracting, we obtain

[β ′(x(γ )) − β ′(π f (γ ))] − [(1 − α)c′(x(γ )) − αc′(π f (γ ))] = −1/ f (γ ). (29)

Now, the RHS of (29) is clearly negative. Suppose to the contrary that x(γ ) ≤ π f (γ ). Using the concavity of β(π) and the 
convexity of c(π), respectively, it would then follow that
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[β ′(x(γ )) − β ′(π f (γ ))] − [(1 − α)c′(x(γ )) − αc′(π f (γ ))]
≥ −[(1 − α)c′(x(γ )) − αc′(π f (γ ))]
≥ −[(1 − α)c′(π f (γ )) − αc′(π f (γ ))]
= −c′(π f (γ ))[1 − 2α].

We may thus conclude that a contradiction occurs if −c′(π f (γ ))[1 − 2α] > −1/ f (γ ). Equivalently, under the condition that

c′(π f (γ ))[1 − 2α] < 1/ f (γ ), (30)

we may conclude that x(γ ) > π f (γ ) and hence that x(γ ) is interior. Assumption 2(iii)(a) and (b) are thus satisfied when 
(30) holds.

We turn next to Assumption 2(iii)(c), which requires x(γ ) non-decreasing for all γ ≥ γx . With x(γ ) defined by (10), and 
using vπγ = 1, we obtain

x′(γ ) =
−[1 + d

dγ (
1−F (γ )

f (γ )
)]

vππ (γ ,π)
=

f ′(γ )(1−F (γ ))

f 2(γ )

vππ (γ ,π)
. (31)

Thus, x′(γ ) = 0, and sign(x′(γ )) = sign(− f ′(γ )) for γ < γ . We conclude that Assumption 2(iii)(c) holds if f ′(γ ) ≤ 0 for 
γ ∈ [γx, γ ).

The remaining task is to provide a condition under which F (γ ) − vπ (γ , π f (γ )) f (γ ) is non-decreasing for γ < γx , so that 
Assumption 2(iii)(d) holds. Differentiating and gathering terms, we find that Assumption 2(iii)(d) holds under the following 
condition:

f (γ )(
β ′′(π f (γ )) − (1 − α)c′′(π f (γ ))

β ′′(π f (γ )) − αc′′(π f (γ ))
) ≥ (2α − 1)c′(π f (γ )) f ′(γ ) for γ < γx. (32)

Notice that the LHS of (32) is positive, while the sign of the RHS is opposite of the sign of f ′(γ ) (since α < 1/2). So, (30)
and (32) can both hold if α is not too far below 1/2. �
Appendix I. Proof of Corollary 3

We observe first that v(γ , π) is strictly concave in π ; thus, Assumption 5(i) holds. Next, we establish that Assump-
tion 5(ii)(a) holds when, for all γ ∈ �, we define x(γ ) by (10). To this end, we show that x(γ ) defined by (10) is interior 
(i.e., x(γ ) ∈ (0, π) for all γ ∈ �). We assume x(γ ) > 0. We also know from the proof of Corollary 2 that x(γ ) < π f (γ ). 
Finally, referring to (31) and using f ′(γ ) < 0 for all γ ∈ �, we also know that x′(γ ) > 0 for all γ < γ with x′(γ ) = 0. Inte-
riority is thus established, and so Assumption 5(ii)(a) holds. Having shown that x′(γ ) > 0 for all γ < γ , we also now know 
that Assumption 5(ii)(c) holds. To confirm that Assumption 5 holds, we thus have left to show that Assumption 5(ii)(b) and 
(d) hold.

We begin with Assumption 5(ii)(d), which requires that

E[γ ] + b′(x(γ )) +
γ∫

γ

vπ (γ̃ , x(γ )) f (γ̃ )dγ̃ < 0. (33)

To evaluate this condition, we observe that

vπ (γ̃ , x(γ )) = β ′(x(γ )) − (1 − α)c′(x(γ )) + γ̃ = −γ + γ̃ ,

where the second equality follows since x(γ ) satisfies vπ (γ , x(γ )) f (γ ) = F (γ ) − 1 = 0 and thus vπ (γ , x(γ )) = β ′(x(γ )) −
(1 − α)c′(x(γ )) + γ = 0. We may now also observe that

b′(x(γ )) = β ′(x(γ )) − αc′(x(γ )) = (1 − 2α)c′(x(γ )) − γ .

Substituting, we may rewrite (33) as

(1 − 2α)c′(x(γ )) < 2(γ − E[γ ]).
Since this inequality is assumed in Corollary 3, we have that Assumption 5(ii)(d) holds.

Now consider Assumption 5(ii)(b). Recall that x(γ ) and π f (γ ) respectively solve:

[β ′(x(γ )) − (1 − α)c′(x(γ )) + γ ] f (γ ) + 1 − F (γ ) = 0

β ′(π f (γ )) − αc′(π f (γ )) + γ = 0.
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Recall that we assume in Corollary 3 that

1 − F (γ ) < (1 − 2α)c′(x(γ )) f (γ ). (34)

Using (34), we have that

[β ′(x(γ )) − (1 − α)c′(x(γ )) + γ ] f (γ ) + 1 − F (γ )

< [β ′(x(γ )) − (1 − α)c′(x(γ )) + γ ] f (γ ) + (1 − 2α)c′(x(γ )) f (γ )

= [β ′(x(γ )) − αc′(x(γ )) + γ ] f (γ )

and so

β ′(x(γ )) − αc′(x(γ )) + γ > 0 = β ′(π f (γ )) − αc′(π f (γ )) + γ .

It follows by concavity of β and convexity of c that x(γ ) < π f (γ ). Thus, under (34), Assumption 5(ii)(b) holds. Further, we 
get x(γ ) < π f (γ ), which is specifically required by Assumption 5(ii)(b).

Having shown that Assumption 5 holds under the conditions in Corollary 3, we now utilize Proposition 3. Proposition 3
further requires that

vπ (γ , x(γg)) f (γ ) − F (γ ) is nondecreasing over [γ ,γg] (35)

where γg ∈ (γ , γ ) is uniquely defined in Proposition 3 given that Assumption 5 holds. Differentiating and using vπγ = 1, 
we find that

d

dγ
[vπ (γ , x(γg)) f (γ ) − F (γ )] = vπ (γ , x(γg)) f ′(γ )

= [vπ (γg, x(γg)) + (γ − γg)] f ′(γ )

= [(F (γg) − 1)/ f (γg) + (γ − γg)] f ′(γ ).

Thus, given f ′(γ ) < 0 for all γ < γ , and given γg ∈ (γ , γ ), we conclude that (35) holds. We can thus apply Proposi-
tion 3. �
Appendix J. Statements and proofs of comparative statics results

Corollary 6. Consider the cooperation model under the assumptions given in Corollary 2. Assume in addition that, for all γ ∈ (γ , γ ), 
f ′(γ ) ≤ 0 and x′(γ ) < π ′

f (γ ). We then have that ∂x(γ )
∂α > 0 for γ ∈ (γ , γ ), ∂γx

∂α > 0 and lim
α↑ 1

2

γx = γ .

Before proceeding to the proof, we note that the additional assumptions listed in Corollary 6 represent a strengthening 
of those in Corollary 2, with the assumption that x′(γ ) < π ′

f (γ ) for all γ ∈ (γ , γ ) ensuring that γx is unique. Note also that 
we suppress the notational dependency of x(γ ), π f (γ ) and γx on α, where α ∈ (0, 1/2).

To prove Corollary 6, we begin by recalling that π f (γ ) is unique, interior to �, and strictly increasing in the cooperation 
model under Assumption 4. Given (10), we may refer to Appendix H to see that x′(γ ) = 0 and sign{x′(γ )} = sign{− f ′(γ )}
for γ < γ . We show further in Appendix H that x(γ ) > π f (γ ), and so x(γ ) > 0. We also know from Corollary 2 that there 
exists γx ∈ (γ , γ ) such that x(γ ) ≤ π f (γ ) for all γ > γx with equality at γx .

We seek to do comparative statics with respect to α. Since different values for α ∈ (0, 1/2) imply different values for 
γx , we need to allow that γx can take any value in (γ , γ ). We thus strengthen our assumptions slightly from those in 
Corollary 2 and assume f ′(γ ) ≤ 0 for all γ ∈ (γ , γ ). With this, we obtain x′(γ ) ≥ 0 for all γ ∈ (γ , γ ). It now follows that 
x(γ ) > 0 for all γ ∈ [γ , γ ]. By Assumption 4, we thus have that

c′(x(γ )) > 0 for all γ ∈ [γ ,γ ]. (36)

For the cooperation model, we may differentiate (10) to obtain

∂x(γ )

∂α
= −c′(x(γ ))

β ′′(x(γ )) − (1 − α)c′′(x(γ ))
> 0 for γ ∈ [γ ,γ ], (37)

where the inequality follows from Assumption 4 and (36).
Next, we may easily verify for the cooperation model that

∂π f (γ )

∂α
= c′(π f (γ ))

β ′′(π (γ )) − αc′′(π (γ ))
< 0 for γ ∈ [γ ,γ ], (38)
f f
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where the inequality follows from Assumption 4 and π f (γ ) > 0 for γ ∈ [γ , γ ].
Since γx uniquely solves x(γ ) − π f (γ ) = 0, we have that

∂γx

∂α
= −

∂x(γx)
∂α − ∂π f (γx)

∂α

x′(γx) − π ′
f (γx)

> 0,

where the inequality follows since x′(γx)) < π ′
f (γx) is ensured by the additional assumptions in Corollary 6 given from 

Corollary 2 that γx ∈ (γ , γ ) and since by (37) and (38) hold in particular for γx ∈ (γ , γ ).

Finally, as α ↑ 1
2 , π f (γ ) and x(γ ) respectively solve

β ′(π) − ( lim
α↑ 1

2

α)c′(π) + γ = 0

β ′(π) − ( lim
α↑ 1

2

(1 − α))c′(π) + γ + 1 − F (γ )

f (γ )
= 0.

Thus, if there is a unique γx at which x(γ ) = π f (γ ), then lim
α↑ 1

2

γx = γ is necessary. �

Corollary 7. Consider the cooperation model under the assumptions given in Corollary 3. We then have that ∂γy
∂α < 0 and dx(γy)

dα =
x′(γy)

∂γy
∂α + ∂x(γy)

∂α < 0.

Before proceeding with the proof, we note that the assumptions in Corollary 3 suffice for the existence of γy ∈ (γ , γ )

satisfying the integral equation in Assumption 3. For Corollary 7, we could also have provided an alternative statement in 
which we directly assume the existence of γy ∈ (γ , γ ) satisfying the integral equation in Assumption 3 and dispense with 
some of the assumptions in Corollary 3; in particular, under this alternative statement, we would no longer require that 
(1 − 2α)c′(x(γ )) < 2(γ − Eγ ) and (1 − F (γ )) 1

f (γ )
< (1 − 2α)c′(x(γ )) for γ ∈ [γ , γ ].

To prove Corollary 7, we begin by recalling that, under the assumptions of Corollary 3, we know that there exists 
γy ∈ (γ , γ ) satisfying the following integral equation:

γ + b′(x(γy)) +
γy∫

γ

[vπ (γ̃ , x(γy)) f (γ̃ ) + 1 − F (γ̃ )]dγ̃ = 0. (39)

Let us refer to the LHS of this equation as LH S(γy, α) where in (39) the suppressed dependence on α arises since the 
functions b′(π) and vπ (γ , π) directly depend on α and since the embedded function x(γ ) also depends directly on α. We 
then have that

∂γy

∂α
= −

dLH S
dα

dLH S
dγ y

, (40)

where the use of total derivative on the RHS is understood to indicate that we are looking at all direct and indirect effects 
of the relevant variable.

To establish the first inequality in Corollary 7, our approach is to sign the numerator and denominator in (40). For this 
task, a convenient feature of the cooperation model is that

∂vπ (γ ,π)

∂α
= c′(π)

vππ (γ ,π) = β ′′(π) − (1 − α)c′′(π)

are independent of γ . It is understood that the meaning of the first derivative reported here is as a partial that captures to 
direct but notationally suppressed impact of a change in α on the function vπ (γ , π). The fact that these expressions are 
independent of γ simplifies some of the calculations reported below.

We first compute dLH S
dα for a given value of γy . Using (39), we find for the cooperation model that

dLH S

dα
= b′′(x(γy))

∂x(γy)

∂α
− c′(x(γy)) < 0, (41)

where x(γ ) satisfies (10) under the assumptions of Corollary 3.
We establish the inequality in (41) as follows. Under the assumptions of Corollary 3, we know that x(γ ) > 0. As shown 

in Appendix H, given Assumption 4, we know that x(γ ) < π f (γ ) and that x′(γ ) = 0 and sign{x′(γ )} = sign{− f ′(γ )} for 
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γ < γ . Since f ′(γ ) < 0 for γ ∈ [γ , γ ] under the assumptions of Corollary 3, we have that x′(γ ) > 0 = x′(γ ) for γ ∈ [γ , γ ]. 
It follows that x(γy) is interior with x(γy) ∈ (0, π), and so we know that b′′(x(γy)) < 0 and c′(x(γy)) > 0. Referring to (37), 
we see, too, that ∂x(γy)

∂α > 0 follows. We conclude that the inequality in (41) holds.

Next, we consider dLH S
dγy

for a given value of α. Using (39), we find for the cooperation model that

dLH S

dγy
= [b′′(x(γy)) + vππ (γ , x(γy))F (γy)]x′(γy) < 0, (42)

where again x(γ ) satisfies (10).
To establish the inequality in (42), we argue as follows. Given that x(γy) ∈ (0, π) and γy ∈ (γ , γ ), we know that 

b′′(x(γy)) < 0, vππ (γ , x(γy)) < 0 and F (γy) ∈ (0, 1); thus, the bracketed term in (42) is strictly negative. With f ′(γ ) < 0
for γ ∈ [γ , γ ] under the assumptions of Corollary 3, and with γy ∈ (γ , γ ), we also know that x′(γy) > 0. The inequality in 
(42) thus holds.

Combining (40), (41) and (42), we conclude that

∂γy

∂α
< 0,

which establishes the first inequality stated in Corollary 7.
Finally, we turn to the second inequality stated in Corollary 7. Specifically, our next task is to sign the following expres-

sion:

dx(γy)

dα
= x′(γy)

∂γy

∂α
+ ∂x(γy)

∂α
.

As a general matter, this expression has competing effects. Using (40), (41) and (42) to substitute for ∂γy
∂α , and simplifying, 

we find, however, that the sign is unambiguous:

dx(γy)

dα
= c′(x(γy))[1 − F (γy)]

b′′(x(γy)) + vππ (γ , x(γy))F (γy)
< 0,

where the inequality now follows directly given that x(γy) ∈ (0, π) and γy ∈ (γ , γ ). �
Appendix K. Proof of Corollary 4

As we discuss in the text, conditions i and ii of Assumption 2 hold for the quadratic preferences we are using in this 
section.

To show part (iii) of Assumption 2, note that the inequality x(γ ) ≤ π f (γ ) can be written as

1

α

(
1 − F (γ )

f (γ )

)
≤ β. (43)

There exists a value of γx ∈ [γ , γ ) such that the above holds with equality. This follows because the left hand side is zero 
when γx = γ and is weakly bigger than β when γx = γ by the hypothesis of Corollary 4. Continuity of f (γ ) then implies 
existence of such a γx . From hypothesis (i) of Corollary 4, it follows that (43) holds for all γ > γx . It follows also that 
for γ > γx , vπ (γ , x(γ )) f (γ ) = F (γ ) − 1 by the definition of x. The function x(γ ) is non-decreasing for all γ ≥ γx given 
the hypothesis (ii) of Corollary 4. And finally, hypothesis (iii) of the corollary implies that F (γ ) − vπ (γ , π f (γ )) f (γ ) is 
non-decreasing. Hence Assumption 2 holds, and we can apply Proposition 1 to prove the corollary. �
Appendix L. Proof of Corollary 5

As argued before, Assumption 3i holds. Note that x(γ ) = 1
α ((1 − F (γ ))/ f (γ ) + αγ ) satisfies 3iia and 3iic by definition 

of x and hypothesis (i) of Corollary 5. Note also that x(γ ) − π f (γ ) = 1
α

1−F (γ )

f (γ )
− β ≤ 1

α
1

f (γ )
− β < 0, by hypothesis (ii) of 

Corollary 5, so that 3iib holds. Finally note that the condition in 3iid is equivalent to:

p(γ ,γy) ≡ (1 − F (γ ))γ + β + (1 + α)E[γ̃ |γ̃ < γ ]F (γ ) −
(

1 − F (γy)

α f (γy)
+ γy

)
(1 + αF (γ )) ≥ 0

for all γ ∈ [γ , γy] with equality at γy . Note that pp(γy) ≡ p(γy, γy) = (1 − F (γy))γy + β + (1 + α)E[γ̃ |γ̃ ≤ γy]F (γy) −
(1 + αF (γy))[γy + (1 − F (γy))/(α f (γy))]. Note also that pp(γy) is continuous in γy and that pp(γ ) = β − 1

α f (γ )
> 0 and 

pp(γ ) = β + (1 + α)(E[γ ] − γ ) < 0 where this last holds by hypothesis (iii). It follows then that there exists γy ∈ (γ , γ )

such that pp(γy) = 0.
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Note as well that

∂ p(γ ,γy)/∂γ = vπ (γ , x(γy)) f (γ ) + 1 − F (γ )

= f (γ )

{[
1 − F (γ )

f (γ )
+ αγ

]
−
[

1 − F (γy)

f (γy)
+ αγy

]}
≤ 0

for γ ≤ γy , where the inequality follows from hypothesis (i) of Corollary 5. Given that p(γy, γy) = 0 and that 
∂ p(γ , γy)/∂γ ≤ 0 for all γ < γy , it follows that p(γ , γy) ≥ 0 for all γ < γy . Thus Assumption 3iid holds. We now ap-
ply Proposition 2 to prove the corollary. �
Appendix M. Examples of densities for Corollaries 4 and 5

Lemma 4. In the generalized Ambrus and Egorov (2017) quadratic model with α > 1, if the density takes the linear form f (γ ) =
a + 2(1 − a)γ , with � = [0, 1] and a ∈ (0, 2), and if 1 ≥ aαβ , then all of the assumptions in Corollary 4 are satisfied.

Proof. To begin, we show that 1
α f (γ )

≥ β . Since f (γ ) = a, this inequality holds due to the assumption in the Lemma that 

1 ≥ aαβ . By Corollary 4, it thus follows that there exists γx ∈ [γ , γ ) such that x(γx) = π f (γx), where x(γ ) ≡ 1
α (

1−F (γ )

f (γ )
+

αγ ). Letting h(γ ) ≡ 1−F (γ )

f (γ )
, we thus have that there exists γx ∈ [γ , γ ) satisfying h(γx) = αβ . We may now consider the 

assumptions in Corollary 4 in sequential fashion:

(i) 1−F (γ )

f (γ )
≤ αβ for γ ∈ [γx, γ ]. This assumption holds, since calculations confirm that h′(γ ) < 0 for all a ∈ (0, 2) and 

γ ∈ [0, 1].
(ii) 1−F (γ )

f (γ )
+ αγ is non-decreasing for γ ∈ [γx, γ ]. This assumption may be expressed as h′(γ ) ≥ −α for γ ∈ [γx, γ ]. If 

a ≤ 1, then we find that h′′(γ ) ≤ 0, and so in this case it suffices to show that h′(1) ≥ −α. Calculations confirm that 
h′(1) ≥ −α if α ≥ 1. If instead a ∈ (1, 2), then we find that h′′(γ ) > 0, and so in this case it suffices to show that 
h′(0) ≥ −α. Calculations confirm that h′(0) ≥ −α if α ≥ 1 and a ∈ (1, 2).

(iii) F (γ ) + αβ f (γ ) is non-decreasing for γ ∈ [γ , γx). We find that

d

dγ
[F (γ ) + αβ f (γ )] = a + 2(1 − a)[γ + αβ] ≡ z(a, γ + αβ).

Thus, we express this assumption as z(a, γ +αβ) ≥ 0 for all γ ∈ [γ , γx). This inequality clearly holds if a ≤ 1. If instead 
a ∈ (1, 2), then z2(a, γ + αβ) = 2(1 − a) < 0. When a ∈ (1, 2), it is thus sufficient to show that

z(a, γx + αβ) = z(a, γx + h(γx)) ≥ 0.

The equality follows from the existence of γx ∈ [γ , γ ) satisfying h(γx) = αβ . Next, since f ′(γ ) < 0 when a > 1, we may 
easily verify that γ +h(γ ) is strictly increasing for γ ∈ [0, 1). We may thus conclude that, when a ∈ (1, 2), γx +h(γx) <
1 + h(1) = 1, where we note that γx approaches 1 as β approaches zero. Thus, if a ∈ (1, 2), then

z(a, γx + h(γx)) > z(a,1) = 2 − a > 0. �
Lemma 5. In the generalized Ambrus and Egorov (2017) quadratic model with α > 1, if the density takes the linear form f (γ ) =
a + 2(1 − a)γ , with � = [0, 1] and a ∈ [1, 2), and if 1 < aαβ , then assumptions (i) and (ii) of Corollary 5 are satisfied.

Proof. The proof is similar to the proof of parts (i) and (ii) of Lemma 4. �
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Krähmer, Daniel, Kováč, Eugenb, 2016. Optimal sequential delegation. J. Econ. Theory (163), 849–888.
Luenberger, David G., 1969. Optimization by Vector Space Methods Series in Decision and Control. Wiley.
Martimort, David, Semenov, Aggey, 2006. Continuity in mechanism design without transfers. Econ. Lett. 93 (2), 182–189.
McAfee, Preston R., McMillan, John, 1992. Bidding rings. Am. Econ. Rev. 82 (3), 579–599.
Melumad, Nahum D., Shibano, Toshiyuki, 1991. Communication in settings with no transfers. Rand J. Econ. 22 (2), 173–198.
Milgrom, Paul, Segal, Ilya, 2002. Envelope theorems for arbitrary choice sets. Econometrica 70 (2), 583–601.
Mylovanov, Tymofiy, 2008. Veto-based delegation. J. Econ. Theory 138 (1), 297–307.

http://refhub.elsevier.com/S0899-8256(20)30035-X/bibF481F137E06D3647295A7FD3D07C8D05s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bib4DF6E330E921759751B704D221391AB0s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bibC4705E0F8B3AA2A5A93BB138A3B8BEC0s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bibB1FAF826D2ACDE76965D5114B67D5B14s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bibAFDAAD028F3B7AD542BA5ED3D4D92FC5s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bibD3A56CD191AE75BFE9765CCFBFB590E1s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bib151825B0E509F3B988E58AC0314D08C1s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bib784DB120377D4C91754FBC21AF74CAFAs1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bib784DB120377D4C91754FBC21AF74CAFAs1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bib1075FE497C3C61E2DCB3E1D4976F4490s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bib218BEACED406C9E20280144ADC07977Bs1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bib00B18A6B819E5FF56F0AC2849B21B3D5s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bib044E2024A8BEB84450E3E4D5AF7CE828s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bib46F78A82D0B0818DA755D09326CC11F9s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bib152126202A5E019C8E1D8A3494EF8616s1
http://refhub.elsevier.com/S0899-8256(20)30035-X/bibC05CCC30A52CE37857C87379CC4330AEs1

	Money burning in the theory of delegation
	1 Introduction
	2 Basic set up
	3 Optimal delegation with money burning
	3.1 General approach
	3.2 Money burning: Case 1
	3.3 Money burning: Case 2
	3.4 Asymmetric costs

	4 Optimal delegation without money burning
	5 Cooperation and delegation
	5.1 The cooperation model
	5.2 Results
	Money burning: Case 1
	The start-up example

	Money burning: Case 2
	The start-up example

	No money burning benchmark


	6 Quadratic welfare and general distributions
	6.1 Ambrus and Egorov’s quadratic-uniform model
	6.2 Applying Lemma 2: simple sufficient conditions
	6.3 Generalizations

	7 Conclusions
	Appendix A A modified version of Luenberger’s Sufficiency Theorem
	Appendix B Proof of Proposition 1
	Appendix C Proof of Proposition 2
	Appendix D Easier-to-check assumptions that imply Assumption 3
	Appendix E Proof of Corollary 1
	Appendix F Proof of Lemma 1
	Appendix G Proof of Lemma 2
	Appendix H Proof of Corollary 2
	Appendix I Proof of Corollary 3
	Appendix J Statements and proofs of comparative statics results
	Appendix K Proof of Corollary 4
	Appendix L Proof of Corollary 5
	Appendix M Examples of densities for Corollaries 4 and 5
	References


