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Abstract

We study how a continuum of agents learn about disseminated information in a

dynamic beauty contest model when they do not observe aggregate variables, such

as prices or quantities, but randomly observe each other’s actions. We solve for the

market equilibrium and find that the average learning curve is S-shaped: learning is

slow initially, intensifies rapidly and finally converges slowly to the truth. We show

that increasing public information always slows down learning in the long run. It also

reduces welfare if agents are sufficiently patient, even when there is no coordination

motive. Lastly, optimal diffusion of information requires that agents “strive to be

different”: agents need to be rewarded for choosing actions away from the population

average.
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1 Introduction

How does information diffuse in a population when there are no prices or quantities that

aggregate the private information dispersed in the marketplace? What, if any, is the impact

on diffusion dynamics and welfare of increasing public information? This paper addresses

these questions in a dynamic beauty contest model based on two key assumptions. First,

agents interact in a decentralized fashion and second, they cannot observe any endogenous

aggregate.

We assume that, at the beginning of time, each of a continuum of agents receives both

a private and a public signal about the state of the world. Every subsequent period, agents

choose their actions to maximize a payoff which depends on i) the state of the world and ii) the

average action in the population at the time. This dependence on population play directly

creates a coordination motive. At the end of the period, every agent noisily observes the

action of another randomly chosen agent. Because actions reflects current information, our

continuum of agents progressively learn about the state of the world by randomly observing

each others. This is the mechanism through which the initial private signals endogenously

diffuse in the population.

We show that there exists an equilibrium where agents eventually learn all private infor-

mation. The average belief in the population about the state of the world thus converges

to the truth, but it does so along an S-shape curve as illustrated by the upper panel of

Figure 1 and discussed further in Section 3.3. The learning curve is initially convex because

of an information snowballing effect: agents learn from the learning of others. The learning

curve is concave at the end because convergence to the truth implies that learning eventually

slows down. In addition, because agents learn independently from one another, their learn-

ing histories are increasingly heterogeneous. This implies that the cross-sectional variance of

beliefs increases at the beginning, as illustrated by the lower panel of Figure 1. This variance
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Figure 1: The distribution of beliefs over time.

eventually converges to zero as agents learn the truth.

Asymptotically, we show that the public information ends up crowding out private infor-

mation: better public information at the beginning of time always slows down learning in

the long run. This follows from an information externality. Indeed, with an increase in the

precision of public information, an agent finds it optimal to load his action more heavily on

the public signal than on his private information. The presence of observational noise im-

plies that now it is harder for others to infer an agent’s private information from his action.

This effect slows down information diffusion. Note that, because of our continuum-of-players

assumption, an agent has no incentive to take this effect into account when choosing his

action.

Can it be possible then that better public information reduces welfare? By analyzing a

continuous-time limit of the discrete-time model, we prove that a given marginal increase in

the precision of the initial public signal is always welfare reducing if agents are sufficiently

patient. In particular, the result encompasses the case when the agents have no coordination
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motive at all. Hence, differently from Morris and Shin (2002)), even in the absence of a

payoff externality better public information can be welfare reducing.

In the last part of the paper we study the problem of a planner who seeks to maximize

social welfare by telling agents what action to take as a time-varying affine function of their

private beliefs. In the decentralized equilibrium, agents do not take into account the impact

on aggregate learning of their actions and hence a learning externality appears. The planner

internalizes this externality and would like agents to take actions more sensitive to their

private beliefs. We show that this sensitivity changes non-monotonically over time. At the

beginning, when information is very dispersed in the population, there is not much to learn

from observing someone else’s action and the planner prescribes a low sensitivity of actions to

private information. After a while, learning has increased each agent’s private information,

and the planner finds it optimal to prescribe a high sensitivity. Eventually, agents know

almost all the information. Then again, there is not much to learn from observing someone

else’s actions, and the planner prescribes a low sensitivity. Finally, we show that, in some

cases, the planner’s solution can be decentralized, in a beauty context spirit, by rewarding

agents for taking actions away from the population play. In other words, agents should be

rewarded for being different.

The results may apply to a broad range of economic interactions. For instance, in the

macro economy, information is typically dispersed because households and firms know more

about their local markets than about the economy as a whole. In addition, agencies collect

and release macroeconomic information with long lags. In the meantime, firms and house-

holds learn about the state of the economy by interacting among each others.1 One may also

relate our setup to micro-level markets in which trade is typically bilateral and transaction

prices are not released in real time. This is the case, for instance, for some over-the-counter

1This is the premise of Lucas (1972) and Phelps (1969). One may argue that asset prices efficiently
aggregate private information. However, even asset prices appear to react to the release of macro information.
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asset markets (see Edwards, Harris, and Piwowar (2004) for a study of the corporate-bond

market).

Literature Review

Our work is related to the recent literature on the social value of public information (see

Morris and Shin (2002), Hellwig (2005), and Angeletos and Pavan (2005)). In these models,

public information may reduce welfare because a static payoff externality creates a coordina-

tion motive. Our contribution is to identify an alternative dynamic mechanism based on an

information externality: in our model public information crowds out the diffusion of public

information in the population.

Information externalities have been studied in the social learning literature (see, among

many others, Vives (1993), Chamley and Gale (1994), and Vives (1997)). The maintained

assumption of these models is that agents learn from public signals. The present paper

makes the opposite assumption that, aside from the first period, agents do not observe any

public signal. The two assumptions end up having strikingly different implications. Indeed,

when agents learn from public signals, the learning speed is decreasing over time. This key

implication is reversed in our model because agents learn from the learning of others, which

creates an information snowballing effect: initially, learning speed increases over time. This

implies that information diffuses along a S-shape, a pattern documented by a number of

empirical studies of social learning (see Chapter 9 of Chamley (2004), and the reference

therein). Recent work on social learning focused on learning in networks: Bala and Goyal

(1998), Gale and Kariv (2003), Smith and Sorensen (2005) study deterministic networks

with finite number of agents, Banerjee and Fudenberg (2004) provide a continuum-of-agents

setup (see also DeMarzo, Vayanos, and Zwiebel (2003) for a network of boundedly rational
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agents). Because they lack tractability, these models end up focusing almost exclusively on

the question of convergence to the truth. Our model of a random network with a continuum of

agents can be solved in closed form, which allows us to take the learning-in-network literature

a step further, with an analysis of transitional dynamics, welfare, and the impact of public

information.

In Wolinsky (1990) seminal random-matching model of learning, information diffuses

at the individual level but stays constant at the aggregate level: indeed, agents leave the

economy after trading and uninformed agents continuously enter the economy. The issue

of convergence when information diffuses on the aggregate has been subsequently addressed

in Green (1991), Blouin and Serrano (2001), and in the independent work of Duffie and

Manso (2006). Wallace (1997), Katzman, Kennan, and Wallace (2003), and Araujo and

Shevchenko (2006) address learning about the money supply in Trejos and Wright (1995)

random-matching model. For tractability, they assume that the money supply becomes

public after either one or two periods. Araujo and Camargo (2006) relax this assumption

in a Kiyotaki and Wright (1989) model, and study the government incentives to expand the

money supply. Our setup is somewhat simpler than these models because agents do not learn

from trading but from observing the action of others. The benefit of this simplification is

that we can explicitly characterize the transitional dynamics of beliefs and study the welfare

impact of public information.

The rest of the paper is organized as follows. Section 2 introduces the setup. Section 3

provides the transitional dynamics of the beauty contest equilibrium, and studies the impact

on welfare and diffusion of a marginal increase in public information. Section 4 studies

optimal information diffusion and section 5 concludes.
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2 Setup: A Dynamic Beauty Contest

In this section we introduce the dynamic beauty contest. Our economy is populated by ana-

lysts who, every period, prepare a forecast of the state of the world. With some probability,

at the end of every period, all analysts publicly announce their forecast, the state of the

world is revealed, and an analyst’s payoff is a function of how far his announced forecast is

from i) the actual state of the world, and ii) the average forecast in the population. With

the complementary probability, the state of the world is not revealed, each analyst gets to

observe the forecast of a randomly chosen colleague up to some noise, and the economy moves

to the next period.

The formal model is as follows. Time discrete and possibly runs to infinity. The economy

is populated by a continuum of analysts indexed by i ∈ [0, 1]. The state of the world is

summarized by a parameter θ ∈ R, that all analysts take to be normally distributed with

mean θ̄ and variance σ2
0 (they share a common prior). For the rest of the paper, the common

prior θ̄ is interpreted as a public signal: namely, at time t = −1, analysts have a completely

diffuse prior and observe θ̄ = θ + vt, for some vt that is normally distributed with mean zero

and variance σ2
0.

However, analysts immediately become asymmetrically informed about θ: at the begin-

ning of time, each analyst receives a signal zi1 = θ + wi1, where wi1 is normally distributed

with mean zero and variance s2
1. Signals are idiosyncratic in that the random variable wi1 is

pairwise independent across analysts.

The timing of a period is as follows. At the start of each period t ∈ {1, 2, . . .}, every

analyst prepares his forecast ait ∈ R for the period. At time t + 1, with probability 1 − β,

the game ends and, following Morris and Shin (2002), the analyst receives a payoff equal to:

Uit = −(ait − θ)2 − b

1− b
(Lit − L̄t), (1)
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where b ∈ (−∞, 1) and

Lit =

∫ 1

0

(ajt − ait)
2 dj (2)

L̄t =

∫ 1

0

Lit di. (3)

An analyst trades off the distance of his announcement to the payoff-relevant parameter θ

against the distance from the average announcement in the population. The parameter b

captures the strength of the beauty contest: larger b means that an analyst worries more

about staying close to average announcement. Lastly, the beauty contest is a zero-sum game.

Indeed, the cross-sectional sum
∫ 1

0
(Lit − L̄) di of analysts’ beauty-contest losses is equal to

zero.

If θ is not revealed, then the game continues and every analyst observes the announcement

of some other randomly chosen analyst, up to some noise. In particular, analyst i observes

ajt + εjt,

where j is drawn randomly according to a uniform distribution, independently across analysts

and over time. Likewise, the noise is normally distributed with mean zero and variance σ2
ε ,

and is idiosyncratic across analysts and over time.

Equilibria

The history for analyst i at time t is given by hit = {zi1, aj1 + εj1, . . . , ajt−1 + εjt−1}. The

strategies are mappings from the set of all possible histories at every time to possible an-

nouncements. The market solution is taken to be the Bayesian equilibrium of the dynamic

game. At any point in time, given his beliefs, and taking as given the strategies of all

other analysts, an analyst’s strategy maximizes his expected payoff of the current period.

This follows because a particular analyst’s action is negligible by the continuum-of-agents

assumption. In particular, let ai(hit) be the strategy of agent i with history hi. Then it has
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to be the case that

ai(hit) = (1− b)E(θ |hit) + bE

(
∫ 1

0

aj(hjt) dj

∣

∣

∣

∣

hit

)

, (4)

which, together with the common prior assumption, implies that equilibrium strategies are

symmetric.

3 Linear Equilibrium

In this section we characterize a Bayesian equilibrium of this beauty-contest game. We show

that the learning curve is S-shaped and that a marginal increase in public information speeds

up learning in the short run but slows it down in the long-run. In some case, when agents

are sufficiently patient, it also reduces welfare.

3.1 Preliminary

We start by describing the analysts learning dynamics, under the three following hypotheses

(which we verify hold in an equilibrium in the next subsection).

Hypothesis H1: at the beginning of each period t ∈ {1, 2, . . .}, an analyst i ∈ [0, 1] has

observed a sequence zi1, . . . , zit of signals, where zit = θ + wit, for some normal random

variables wit with mean zero and variance s2
t .

Hypothesis H2: the sequence wi1, wi2, . . . is independent from θ for all i ∈ [0, 1].

Hypothesis H3: the random variables wit are almost surely independent across time and

independent from wi1, wi2, . . . , wit−1. Moreover, for all j ∈ [0, 1], wit is almost surely inde-

pendent from wj1, wj2, . . . , wjt.

We now provide a recursive characterization of the learning dynamics implied by Hypotheses

(H1)-(H3). At the beginning of each period t ∈ {0, 1, 2, . . .}, the prior of analyst i ∈ [0, 1] is
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that θ is normally distributed with mean θ̂it ≡ E [θ | zi1, . . . , zit] and variance σ2
t . Remember,

the prior at the beginning of time (before receiving the first signal) is θ̂i0 = θ̄ and σ2
0. We

refer to the conditional expectation θ̂it as the “belief” of the analyst. We guess and verify in

the proof of Proposition 1 that the cross-sectional distribution of these beliefs can be written

θ̂it = (1− xt)θ̄ + xtθ + uit, (5)

where xt ∈ [0, 1] is some constant, and uit is a normal random variable with mean zero and

variance τ 2
t , that is independent from θ. In words, equation (5) says that, conditional on the

true value θ, the cross-sectional distribution of θ̂it is normally distributed with mean (1−xt)θ̄+

xtθ and variance τ 2
t . The initial conditions are x0 = 0 and τ0 = 0. The following Proposition

applies standard linear-projection results (see for instance chapter 4 of Luenberger (1969))

in order to derive a recursive characterization of {xt, σ
2
t , τ

2
t }∞t=0.

Proposition 1 (Learning dynamics). For a given sequence {s2
1, s

2
2, ...} of variances and

under hypothesis (H1)-(H3), at each time t ∈ {0, 1, . . . , }, an analyst believes that θ is nor-

mally distributed with mean θ̂it and variance σ2
t , where

θ̂it+1 = θ̂it + kt+1(zit+1 − θ̂it) (6)

σ2
t+1 = (1− kt+1)σ

2
t (7)

where kt+1 ≡ σ2
t /(σ

2
t + s2

t+1), and σ2
0 is given. In addition, the parameters governing cross-

sectional distribution (5) of θ̂it are

xt+1 = 1− σ2
t+1

σ2
0

(8)

uit+1 = (1− kt+1)uit + kt+1wit+1 (9)

τ 2
t+1 = σ2

0xt+1(1− xt+1). (10)

Proof. In the appendix.
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Note that xt is the reduction in the variance of an analyst’s posterior relative to his initial

belief. The following result will prove useful,

Lemma 1. For a given sequence {s2
1, s

2
2, . . .} of variances, and under hypotheses (H1)-(H3),

the variance reduction xt follows the recursion

xt+1 = 1− (1− xt)
s2

t+1/σ
2
0

s2
t+1/σ

2
0 + (1− xt)

, (11)

for all t ∈ {1, 2, . . .} and with x1 = σ2
0/(s

2
1 + σ2

0).

Proof. To obtain the recursion for xt, divide both sides of equation (7) by σ2
0. The result

follows by plugging the value of kt+1 and using equation (8).

This previous result can be easily interpreted in terms of precisions. Note that 1/(σ0(1−

xt)) is the precision of an agent beliefs about θ at time t. After observing the signal with

precision 1/st+1, the agent’s new precision is the sum of his previous precision plus the

precision of the new signal: 1/(σ0(1− xt+1)) = 1/(σ0(1− xt)) + 1/st+1. This is equivalent to

equation (11).

So far in this section we have characterized the learning dynamics under hypotheses (H1)-

(H3), and given a sequence {s2
1, s

2
2, . . .} of variances. To obtain that sequence and to verify

the validity of our hypotheses, we need to solve for the actions taken by the analysts in

equilibrium. The next section proceeds to construct such an equilibrium.

3.2 A Linear Equilibrium

In this subsection we characterize an equilibrium in which an analyst’s announcement is

affine.

Suppose that the announcement of analyst j ∈ [0, 1] at time t ∈ {1, 2, . . .} can be written

as a linear combination of his time 0 prior and his current beliefs Ftθ̄ + Gtθ̂jt, for some

(Ft, Gt) ∈ R
2
+ to be determined. Note that, because all analysts are using the same linear

11



coefficients at any time t, their different histories affect their actions only through their

posterior beliefs. Substituting (5) we have that

ajt = Ftθ̄ + Gt

(

(1− xt)θ̄ + xtθ + ujt

)

. (12)

The recursion (9) implies that, for all j ∈ [0, 1], ujt is a linear combination of wj1, wj2, . . . , wjt.

Then, by the induction hypothesis (H3), the ujt are almost surely independent across analysts.

Therefore, given that the ujt have zero mean given θ, an informal application of the Law of

Large Numbers shows that the average announcement is

∫ 1

0

ajt dj = Ftθ̄ + Gt

(

(1− xt)θ̄ + xtθ
)

. (13)

This implies that an analyst with history hit expects the average announcement to be

E

[
∫ 1

0

ajt dj

∣

∣

∣

∣

hit

]

= Ftθ̄ + Gt

(

(1− xt)θ̄ + xtθ̂it

)

.

Hence, equation (4) shows that analyst i’s best reply is

ait = (1− b)θ̂it + b
[

Ftθ̄ + Gt

(

(1− xt)θ̄ + xtθ̂it

)]

. (14)

Identifying with the coefficients of (12) and (14) shows that, in a linear equilibrium

Ft =
b(1− xt)

1− bxt

(15)

Gt =
1− b

1− bxt

. (16)

In particular Ft = 1−Gt, implying that an analyst’s forecast can be written θ̄ +Gt

(

θit − θ̄
)

.

If b = 0 there is no beauty contest and Gt = 1, meaning that the equilibrium analyst’s

strategy is simply to announce his belief θ̂it. If b ∈ (0, 1) then Gt ∈ (0, 1) implying that

analysts underweight their belief θit relative to the common prior θ̄: analysts strive to look

alike. Conversely if b < 0, then Gt > 1 and analysts strive to look different.

The last thing to do in order to complete our characterization of an equilibrium, is to

verify that our maintained hypotheses (H1)-(H3) hold, and to determine the sequence s2
t+1.
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Equation (12) implies that observing the announcement of a randomly chosen agent j ∈ [0, 1]

up to some noise εjt amounts to observing

zit+1 = θ +
ujt

xt

+
εjt

Gtxt

≡ θ + wit+1, (17)

where

wit+1 ≡ ujt/xt + εjt/(Gtxt), (18)

which verifies hypothesis (H1). Hypothesis (H2) and (H3) are verified because of the following

intuitive reason. Random matching with a continuum of analysts implies that any two

analysts have almost surely observed different colleagues at any previous time. Also, any

of those colleagues have almost surely observed different colleagues previously, and so on.

This together with the normality and the linear strategies, imply that conditional on θ, the

signals received by observing others analysts are normally distributed, independent through

time and across analysts. The formal statement is as follows.

Proposition 2 (Existence). There exists a linear equilibrium in which hypotheses (H1)-

(H3) hold. The coefficients Ft and Gt of the linear strategy are given by (15) and (16). The

variance of wit+1 is

s2
t+1 = σ2

0

xt(1− xt) + α(1− bxt)
2/(1− b)2

x2
t

(19)

and the “variance reduction” xt evolves according to

xt+1 = H(xt, α, b) ≡ xt +
x2

t (1− xt)
2

xt(1− x2
t ) + α(1− bxt)2/(1− b)2

(20)

for all t ∈ {1, 2, . . .}, where α ≡ σ2
ε/σ

2
0 and with initial condition x1 = σ2

0/(s
2
1 + σ2

0).

Proof. In the appendix.
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3.3 Information Aggregation Dynamics

We first study the dynamics of the “variance reduction” variable xt.

Proposition 3 (Asymptotic revelation). If x1 = 0, then xt = 0 for all t ∈ {1, 2, . . .}.

Otherwise, if x1 6= 0, then the variance reduction goes to 1 as t goes to infinity.

Proof. The function H( · , α, b) is continuous and such that i) H(x, α, b) > x for all x ∈ (0, 1)

and ii) H(0, α, b) = 0 and H(1, α, b) = 1.

If x1 = 0, there is nothing to learn and an analyst’s belief stays the same forever. If x1 > 0

then, asymptotically, an analyst’s belief converges to the truth. The following Proposition

shows that time path of the cross-sectional distribution (5) of beliefs has the two following

qualitative features:

Proposition 4 (S-shaped average, Hump-shaped variance). The average belief θ̂t ≡
∫ 1

0
θ̂it di converges to θ along a S-shaped curve. Namely, there is some time ts ≥ 0 such that

|θ̂t+1 − θ̂t| is increasing if and only if t ≤ ts. The variance τ 2
t of the cross-sectional belief

distribution converges to zero following a hump-shaped curve. Namely, there is some time

th ≥ 0 such that τ 2
t+1 − τ 2

t ≥ 0 if and only if t ≤ th.

Proof. The first point requires some brute force in the appendix. The second point follows

from (10).

The results of the Proposition are illustrated by the numerical calculations of Figure

2. The associated parameter values, used in all the numerical examples of this paper, are

summarized in Table 1. The upper panel shows the time path of the average belief θ̂t,

assuming that the state of the world is θ = 3. The lower panel shows the time path of the

variance τ 2
t of the cross-sectional belief distribution.

The learning curve is convex at the beginning for the following reason. By observing a

random colleague, an analyst effectively observes the average belief θ̂t ≡ (1 − xt)θ̄ + xtθ up

14



Table 1: Parameter Values.

Parameter Value

Variance of the prior σ2
0 1

Variance of the observational noise σ2
ε 1

Implied noise to signal ratio α 1

Variance of the private signal noise s21 199
Implied initial variance reduction x1 0.005

Initial belief θ̄ 2
Beauty contest intensity b 0
Probability of continuing β 0.7

to two noises: a “sampling” noise ujt and an exogenous observational noise εjt. However,

as analysts learn, the average belief θ̂t loads more and more on the state of the world θ.

This mitigates the negative impact on learning of the two noises and initially accelerates

learning. Note that, because of convergence to the true value, learning cannot accelerate

forever. Hence, at the end, the learning curve must be concave.

Lastly, note that if x1 is large enough then ts = 0. In that case, learning immediately

start in the upper branch of the S, and learning speed is decreasing over time. The condition

that x1 is large enough is met when s2
1/σ

2
0 is small. In other words, when information is not

too dispersed so that analysts learn a great deal from their initial private information, then

there is no information snowballing effect.

The hump-shape of the cross-sectional variance follows because analysts have independent

learning histories that lead them to learn the same thing. Namely, at time zero, analysts’

beliefs are all the same and the initial signals θ+wi1 create heterogenous beliefs. This implies

that the distribution of beliefs fans out (τ1 > τ0 = 0). By continuity, if the distribution

of beliefs remains concentrated (τ1 ≃ 0), then then the distribution continues to fan out

(τ2 > τ1). Asymptotically analysts agree again, implying that τt must converges to zero.
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Figure 2: Aggregate Learning Dynamics.

The next proposition shows the intuitive results that reducing σ2
ε , or reducing b leads to

faster learning: indeed, analysts learn more from each others if the observational noise is

smaller, or if other analysts make announcements that are more sensitive to their current

beliefs.

Proposition 5 (A comparative static). Consider (σ2
ε(1), σ2

ε(2)) ∈ R
2
+ such that σ2

ε(1) <

σ2
ε(2), let x1(k) = x1 and xt+1(k) = H(xt(k), σ2

ε(k)/σ2
0, b) for k ∈ {1, 2}. Then, xt(1) > xt(2)

for all t ∈ {2, 3, . . .}. Similarly, consider (b(1), b(2)) ∈ (−∞, 1)2 such that b(1) < b(2), let

x1(k) = x1 and xt+1(k) = H(xt(k), α, b(k)) for k ∈ {1, 2}. Then, xt(1) > xt(2) for all

t ∈ {2, 3, . . .}.

Proof. Follows from the fact that H(x, α, b) is strictly decreasing in both α and b.

The following Proposition characterizes the asymptotic learning speed.

Proposition 6 (Asymptotic learning speed). The sequence of σ2
t admits the following

16



asymptotic expansion

σ2
t =

σ2
ε

t
+ σ2

ε

(

1 +
2σ2

ε

(1− b)σ2
0

)

log(t)

t2
+ O

(

1

t2

)

, (21)

where O(1/t2) is a sequence bounded by M/t2, for some M ∈ R+.

Proof. In the appendix.

This tells us two things. First, to a first order approximation, learning occurs at speed

σ2
ε/t, as if each analyst were receiving a signal θ + εit every period. So, in our setup with

independent learning histories, social learning resembles single-agent learning in the limit.

This is in sharp contrast with the setup of Vives (1997) in which analysts share a common

learning history. The second message of the Proposition is that public information has a

negative impact on learning in the long run.

Corollary 1 (Short- and long-run impacts of public information). Consider (σ2
0(1), σ2

0(2))

such that σ2
0(1) < σ2

0(2). Let x1(k) = σ2
0(k)/(s2

1 + σ2
0(k)), xt+1(k) = H(xt(k), σ2

ε/σ
2
0(k), b),

and σ2
t (k) = σ2

0(k)(1− xt(k)). Then, there exists some 1 ≤ Ts < Tℓ such that, σ2
t (1) < σ2

t (2)

for all t ∈ {1, . . . , Ts} and σ2
t (1) > σ2

t (2) for all t ∈ {Tℓ, Tℓ + 1, . . .}.

Proof. The result for t ∈ {1, . . . , Ts} follows from (7). For t ∈ {Tℓ, Tℓ +1, . . .}, it follows from

Proposition (6).

Imagine that, at time zero, analysts receive some public information regarding the state of

the world. This decreases σ2
0, and therefore speeds up learning in the short run. However,

Corollary 1 shows that it slows learning down in the long run. Indeed, with better public

information, an analyst’s forecasts puts a higher weight on the common prior θ̄, and a lower

weight on their belief θit. Together with the observational noise, this implies that analysts

have less to learn from observing each others, and slows down learning.
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3.4 The Welfare Cost of Public Information

This subsection shows that, in our setup, public information can reduce welfare. Our finding

holds even when b = 0. Hence, in contrast with Morris and Shin (2002), the negative impact

on welfare of public information does not rely on analysts having a coordination motive.

3.4.1 Utilitarian Welfare

We take our welfare criterion to be the equally weighted sum of analysts’ expected utility. By

the Law of Large Number, this criterion coincides with the ex-ante utility of a representative

analyst

− E

[

∞
∑

t=1

(1− β)βt−1 (at(hit)− θ)2

]

(22)

where (1 − β)βt−1 is the probability that the game ends at time t ∈ {1, 2, . . .}. Now, from

equation (12), we know that at(hit) − θ = (1 − Gtxt)(θ̄ − θ) + uit, where uit is independent

from θ, has a mean zero and variance τ 2
t . This implies that

E
[

(at(hit)− θ)2] = (1− xtGt)
2E

[

(θ − θ̄)2
]

+ G2
t E

[

u2
it

]

=
[

σ2
0 (1− xt)

] (1 + (b− 2)bxt)

(1− bxt)
2 ≡ σ2

t w(xt), (23)

where the second line follows from plugging (16) and τ 2
t = σ2

0xt(1 − xt) into the equation,

and noting that σ2
t = σ2

0(1− xt). So the utilitarian criterion can be written:

−
∞

∑

t=1

(1− β)βt−1σ2
t w(xt). (24)

The flow welfare at time t is the variance of beliefs σ2
t multiplied by some function w(xt) that

is greater than 1, and which is equal to 1 when b = 0.

3.4.2 A Continuous-time Approximation

This subsection proposes a continuous-time approximation of our setup which greatly fa-

cilitates welfare analysis. The approximation is obtained by letting the observational noise
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grow very large while, at the same time, letting analysts observe each others more and more

frequently. Formally, let ∆ be the amount of time between periods, and let us index the

economy by ∆.

Assumption 1. The observational variance σ2
ε(∆) is such that, as ∆ goes to zero, ∆σ2

ε(∆)

goes to some σ̃2
ε ∈ R+.

In order to obtain a proper continuous time limit, we also require that the probability 1−β(∆)

of ending the game goes to zero in order ∆.

Assumption 2. The probability β(∆) of continuing the game is such that, as ∆ goes to

zero, (1− β(∆))/∆ goes to some r ∈ R+.

In other words, in the limit as ∆ goes to zero, the game ends at some Poisson arrival time with

intensity r. Under these two assumptions, the evolution equation for the variance reduction

is

xt+∆ − xt

∆
=

x2
t (1− xt)

2

xt(1− x2
t )∆ + ∆σ2

ε(∆)/σ2
0(1− bxt)2/(1− b)2

which, by taking the limit as ∆ goes to zero, becomes

ẋt =
σ2

0

σ̃2
ε

(1− b)2 x2
t (1− xt)

2

(1− bxt)
2 (25)

The Welfare criterion (24) is

−
∞

∑

k=1

(1− β) βkσ2
k∆w(xk∆) = −

∞
∑

k=1

(r∆ + o(∆)) e−(r+o(1))k∆σ2
k∆w(xk∆)

which, by taking the limit as ∆ goes to zero, becomes

W (σ2
0) = −r

∫

∞

1

σ2
t w(xt) e−r(t−1)dt, (26)
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with initial condition x1 = σ2
0/(σ

2
0 + s2

1) and where σ2
t = σ2

0(1 − xt).
2 We now derive

a closed-form solution for the integral (26), which intuitively follows from guessing that

W (σ2
0) = J(x1), where the function J( · ) solves the Hamilton-Jacobi-Bellman equation

rJ(x) = −rσ2
0(1− x)w(x) + J ′(x)

σ2
0

σ̃2
ε

(1− b)2 x2 (1− x)2

(1− bx)2 .

Direct integration of this ODE with the change of variable y = (1 − b)x/(1 − x) and given

the boundary condition J(1) = 0 provides a

Lemma 2 (closed-form Solution). Let G(y) ≡ y + 2 log(y) − 1/y and f(y) ≡ (1 + (1 −

b)y)/y2/(1− b). Then, we have

W (σ2
0) = −rσ̃2

ε

∫

∞

y1

f(y)e
−rσ̃2

ε/s2
1

G(y)−G(y1)
y1 dy, (27)

where y1 = (1− b)σ2
0/s

2
1.

Proof. In the appendix.

Based on formula (27), we show:

Theorem 1 (Welfare Cost of Public Information). For all σ2
0 > 0 the exists some η > 0

such that, for all rσ̃ε < η, W ′(σ2
0) > 0.

Proof. In the appendix.

Theorem 1 implies that for any level σ2
0 of information, a marginal increase in public infor-

mation reduces welfare as long as the intensity r of finishing the game is low enough. Hence,

in contrast with Morris and Shin (2002), an increase in public information can reduce welfare

even if b = 0 and analysts’ payoffs induce no coordination motives.

2We cannot provide an approximation theorem stating that the learning dynamics in the continuous time
limit is indeed the limit of discrete-time learning dynamics as the time ∆ between period goes to zero. We
conjecture as much, and proceed. In appendix C, we provide numerical calculations suggesting that the result
of Theorem 1 also holds in discrete time.
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Figure 3: Welfare in the continuous-time model as a function of σ2
0.

The Theorem does not imply, however, that W (σ2
0) can be monotonically increasing in

σ2
0. Indeed, revealing the state of the world would clearly improve welfare. By continuity,

one might expect that a sufficiently large release of public information would also improve

welfare. This intuition is confirmed by the numerical calculation of Figure 3: it shows that

the function W ( · ) is non-monotonic. It first decreases but eventually increases if σ2
0 is large

enough.

4 Optimal Information Diffusion

Our dynamic beauty contest exhibits an information externality. Namely, in an equilibrium,

an analyst does not internalize that his announcement constitutes valuable information for

the analyst who is spying on him. This section addresses this externality by studying a

problem of optimal information diffusion, subject to the learning technology. The tradeoff

faced by the planner is as follows: in a static world (only one period) it would be efficient

for the analysts to announce their beliefs. However, because of the dynamic nature of the

problem, future analysts learn from the announcements made today, and hence a planner
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would like the analysts to make announcements that are even more sensitive to their beliefs.

This generates a loss today in case that the game ends: indeed, analysts announcement will

be far from the actual parameter value. On the other hand, this improves the dissemination

of information tomorrow in case that the game continues.

We show that the planner requires that analysts strive to be different: they should make

their forecast more sensitive to their private beliefs than in the static optimum. In addition,

the optimal sensitivity varies non-monotonically over time. It is small at the beginning, large

in the middle, and small again at the end.

4.1 The Planning Problem

A planner chooses functions at( · ) mapping histories ht into announcements, in order to

maximize the ex-ante utility of a representative analyst:

−
∞

∑

t=1

(1− β)βt−1

∫

(at(hit)− θ)2 Pt(dhit, dθ), (28)

where Pt is the joint probability distribution over histories hit and the state of the world

θ. The planner is constrained by the learning technology which means that, at each time

t ∈ {2, 3, . . . , }, the probability distribution Pt is obtained by an application of Bayes’ rule

given Pt−1 and given that analyst i ∈ [0, 1] observes the announcement a(hjt) + εjt of some

randomly chosen analyst j 6= i.

In this section, we follow Vives (1997) and restrict attention to the class of time-varying

affine announcements, whereby an analyst’s announcement is restricted to be

ait = Ftθ̄ + Gtθ̂it, (29)

for some time-varying constants Ft and Gt and where, as before, θ̂it is an analyst expecta-

tion of θ conditional on his history hit−1. In words, equation (29) means that an analyst

announcement must be an affine function of his conditional expectations θ̂it. Although the
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existence of a linear equilibrium makes it natural to study affine announcements, we could

not prove that an unrestricted optimum is indeed affine. In section 4.3, we illustrate one

virtue of an optimal affine announcements: as long as Gt is not too large, it can be imple-

mented by letting analysts play a beauty contest game with an appropriately chosen weight

b ∈ (−∞, 1).

Given our restriction (29), we can solve for the learning dynamics exactly as in the previous

section. In particular, the results of Proposition 1 hold, with s2
t+1 = σ2

0/x
2
t (xt(1− xt) + α/G2

t ).

Plugging this back into (11) and rearranging gives the transition function

xt+1 = xt

(

1 +
G2

t xt(1− xt)
2

G2
t xt(1− x2

t ) + α

)

≡ g(xt, G
2
t ). (30)

Let’s now turn to the planner’s objective. We first note that, by the Law of Iterated Expec-

tations, E(θ̂it) = θ̄. By definition, V (θ− θ̂it) = σ2
t . Lastly, because θ̂it is a conditional expec-

tation, if follows that θ̂it is orthogonal to θ− θ̂it. Therefore V (θ) = σ2
0 = V (θ̂it) + V (θ− θ̂it),

implying that V (θ̂it) = σ2
0 − σ2

t . One can also verify these results by working directly on

equation (5) for the cross-sectional distribution of θ̂it. Taken together, these remarks imply

that the planner’s flow utility is

−E
[

(ait − θ)2
]

= −θ
2
(Ft + Gt − 1)2 − σ2

0(Gt − 1)2xt − σ2
0(1− xt).

Note that the control Ft does not enter the transition function (30). Hence, maximizing

the objective with respect to Ft reduces to a static quadratic optimization problem, whose

solution is Ft = 1 − Gt. Replacing into the objective and ignoring the constants we can let

the planner’s flow utility be xt(Gt − G2
t /2). Lastly, note that we can restrict attention to

positive Gt. Indeed, if Gt < 0, then applying −Gt yields a higher flow utility and leaves xt+1

unchanged. Hence, we can make the change of variable γt ≡ G2
t and let Gt =

√
γt.
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4.2 Striving to be Different

An admissible control is a positive sequence c = {γt}∞t=1. The set of admissible controls is

denoted by C. Given an admissible control c, the state xc
t evolves according to the difference

equation xc
t+1 = g(xc

t , γt), for all t ≥ 1, where xc
1 = x1 is given. The planner’s inter-temporal

utility is

U(x1, c) =
∞

∑

t=1

(1− β)βt−1u(xc
t , γt) ,

where u(x, γ) = x(
√

γ − γ/2). The planner’s problem in sequence form is then

W (x1) = sup
c∈C

U(x1, c). (31)

Our first result in this section is to show that W ( · ) is strictly increasing: the higher the

precision of analysts’ beliefs, the higher the value to the planner:

Proposition 7 (Monotonicity). The value function W ( · ) is strictly increasing. In addi-

tion, for every x ∈ (0, 1), there exists some m ∈ R+ and some ε ∈ R+ such that 0 < x′−x < ε

implies that W (x′)−W (x) > m(x′ − x).

Proof. In the appendix.

The second part of the proposition shows that the welfare gains from increasing x are (at

least) of first-order. We study the following Bellman operator

T (f)(x) = sup
γ∈R+

{(1− β)u(x, γ) + β f ◦ g(x, γ)} . (32)

We apply standard dynamic programming arguments in the following Banach space. Given

(k, η) ∈ R+, we let X(k, η) be the set of continuous functions f : [0, 1] → R+ such that

f(0) = 0, bounded above by 1/2 and such that, for all 0 < x < x′ < η,

f(x′)− f(x) ≤ k(x′ − x). (33)
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Clearly, X(k, η) is a Banach space when equipped with the sup norm.3

Lemma 3. The following holds,

(i) For every f ∈ X(k, η), the suppremum on the right-hand side of (32) is achieved.

(ii) For every f ∈ X(k, η), Tf is continuous and bounded.

(iii) There exists (k, η) ∈ R
2 such that if f ∈ X(k, η) then Tf ∈ X(k, η).

Proof. In the appendix.

This leads to the following Proposition

Proposition 8. The operator T is a contraction mapping X(k, η) into itself. Therefore it

has a unique fixed point W ( · ). Also, the function W ( · ) is the value of the planner’s optimal

control problem: it satisfies (31).

Proof. The contraction follows by noticing that T satisfies Blackwell sufficient conditions for

a contraction. Hence, the Contraction Mapping Theorem applies to (32). Lastly, given that

the flow utility is bounded above, we can apply the Bellman Principle, implying that the

function W ( · ) is indeed the value of the planner’s. (See Theorems 3.2, 3.3, and 4.3 in Stokey

and Lucas (1989)).

The static planning problem (β = 0) is to maximize u(x, γ) with respect to γ ≥ 0. Its

solution is to set γ = 1. In other words, the planner prescribes analysts to announce their

belief θ̂it. This result no longer holds in the dynamic problem under consideration when

β > 0, because increasing γt speeds up learning. Indeed, (30) shows that, as long as

α > 0, xt+1 increases with γt. This is a symptom of the externality we seek to study and

3One might wonder what makes condition (33) useful: indeed, it is not needed for applying the Contraction
Mapping Theorem, nor to show that the solution of the Bellman equation coincides with the planner’s value
function. The condition turns out to be useful for establishing properties of the planner’s policy function.
We come back to this remark when discussing the results of Proposition 9.
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follows because analysts observe noisy observation of each others’ announcements, of the

form (1 − √γt)θ̄ +
√

γt θ̂jt + εjt. Therefore, increasing γt increases the signal-to-noise ratio

and hence the informativeness of the announcement. Note however that if α = 0, then there

is no noise and an analyst conditional expectation can be inferred perfectly from his action.

In that case, γ has no impact on the dynamics of xt and the planning solution is to let γt = 1

at each time.

One might guess from this discussion that the planner finds it optimal to let γt > 1 at

each time because this allows the planner to increase xt+1. This intuition is confirmed in the

following Proposition:

Proposition 9. Let Γ : [0, 1]→ [0,∞) be the maximum correspondence of (32) when f = W .

Then,

(i) For all x ∈ (0, 1), Γ(x) ⊂ (1,∞)

(ii) In an optimal solution, x∗

t goes to 1 as time goes to infinity.

(iii) Any optimal control is such that γ∗

t goes to one as time goes to infinity.

(iv) For any sequence xk → 0 and any γk ∈ Γ(xk), we have that γk → 1 as k →∞.

Proof. Part (i) In the appendix.

Part (i) of the Proposition tells that the planner finds it optimal to internalizes the informa-

tion externality by prescribing γ > 1. Indeed, because u(x, γ) is maximized at γ = 1, the

welfare loss of increasing γ above one is of second order. On the other hand, Proposition

7 implies that the welfare gain of increasing xt+1 are (at least), of first order. Part (ii) of

the Proposition tells that, asymptotically in the planner’s solution, there is full revelation of

the state of the world: the variance of beliefs goes to zero. Part (iii) says that an optimal

control converges to 1 as time goes to infinity: there is nothing to learn in the limit, and
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the control approaches the static solution. This follows from point (ii), together with the

fact that the maximum correspondence is upper hemi-continuous and satisfies Γ(1) = {1}.

Part (iv) tells that any selection of the maximum correspondence Γ( · ) is not monotonic.

Specifically, the planner prescribes γ ≃ 1 for x close to zero, γ ≃ 1 for x close to 1, and γ > 1

for x bounded away from 0 and 1. That is, the social optimum (approximately) coincides

with the private optimum at the boundaries x ∈ {0, 1}. In between, the planner speeds up

information diffusion by prescribing γ > 1. Some intuition goes as follows. If no signal is

revealed or if all information is revealed, everybody has the same posterior. This implies that

analysts have nothing to learn from observing their colleagues’ announcements. As a result,

the dynamic optimum must coincide with the static optimum. By continuity, close to those

extremes, the dynamic optimum almost coincides with the static optimum.

The main difficulty of Proposition 9 is to prove part (iv). One might think that it follows

from upper hemi-continuity at zero: in fact, because Γ(0) = R, upper hemi-continuity at

zero imposes no restriction on the behavior of the maximum correspondence for x close to

zero. Another approach is to take first-order conditions in equation (32) and write

(1− β)
∂u

∂γ
+ β

dW

dx
◦ g(x, γ)× ∂g

∂γ
(x, γ) = 0.

Now, as x goes to zero, we have that ∂g/∂γ also goes to zero, meaning that there is and less

gain from increasing γ above one. Thus, one might expect that γ goes to one as x goes to

zero. This argument runs into two difficulties. First, as x goes to zero, the loss ∂u/∂γ of

increasing γ also goes to zero. And second, the value function needs not be differentiable,

as our problem does not satisfy the convexity conditions required for an application of the

Benveniste and Scheinkman (1979) Theorem. The second difficulty can be circumvented

using property (33), which shows that the slope of the value function is bounded above for

x close to zero.
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4.3 Numerical Example

In this section we provide a numerical illustration of our results. We solve the planning

problem on Matlab with a standard value-function-iteration algorithm (see, e.g., Chapter

12 of Judd (1999)). Figure 4 shows that the value function is indeed increasing in the variance

reduction x and appears to be strictly quasi-concave but not concave. Figure 5 confirms that

the maximum correspondence is not monotonic. Lastly, the upper panel of Figure 6 confirms

that information diffuses faster under the planning solution.
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Figure 4: Value Function.
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Figure 5: Policy Function.

The lower panel of Figure 6 provides a numerical answer to the following implementation

question: is there a sequence of beauty-contest games implementing the planning solution?

In other words, can we pick sequence {bt}∞t=1 of beauty-contest parameters such that, at each

time, analysts announcements are socially optimal. One easily sees that this amounts to pick
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Figure 6: Aggregate Learning Dynamics.

some bt such that

√
γt =

1− bt

1− btxt

. (34)

Since the planner prescribes γt > 1, it must be that bt < 0, meaning that the planner gives

monetary reward for making announcements away from the population average. What might

prevent implementation is that, in a beauty-contest equilibrium, the weight (1− b)/(1− bxt)

that an analyst puts on his own belief θ̂it is bounded above by 1/xt. Therefore, the planning

solution can be implemented in a beauty-contest game if and only if, for every x ∈ [0, 1],

there is some γ ∈ Γ(x) such that γ ≤ 1/x2. This property clearly holds when x ≃ 0 because,

in that region, every γ ∈ Γ(x) is close to 1. Unfortunately, we are not able to prove that

this property holds for all x ∈ [0, 1]. The calculations shown in the lower panel of Figure 6

suggest however that, for some parameter values, the social optimum can be implemented in

a sequence of beauty-contest games.
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5 Conclusion

This papers studies how private information diffuses among a continuum of agents who

interact at random. We show that agents learn the truth along a S-shape learning curve. In

particular, at the beginning there is an information snowballing effect because agents learn

from the learning and others. We show that larger public information at the beginning always

slows down the the diffusion of private information in the economy, and sometimes reduce

welfare. Further work may address the optimal timing of public information release in this

economy.
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A Appendix

A.1 Proof of Proposition 1
Standard projection formula (see, e.g., Luenberger (1969)) imply equations (6) and (7). Substituting (5) into
(6) and identifying unknown coefficients, we obtain the recursions (8) and (9) of the Proposition. Note that,
since wit+1 is independent from θ, our guess that uit+1 is independent from θ is verified. Because uit is a
linear combination of wi0, . . . , wit, our hypothesis (H3) implies that it is independent from wit+1. Hence,
taking variance on both side of (9) implies equation (10) of the Proposition. Now, equation (8) can be written
1−xt+1 = (1−kt+1)(1−xt), and equation (7) can be written σ2

t+1 = (1−kt+1)σ
2
t . Hence, 1−xt+1 and σ2

t+1

solve the same linear difference equation. This implies that the ratio (1 − xt)/σ
2
t stays constant over time,

that is 1− xt+1 = σ2
t+1/σ

2
0 which is recursion (8) of the Proposition. Because for kt+1 = σ2

t /(σ
2
t + s2t+1), one

easily verifies that equation (7) is equivalent to

σ2
t+1 = (1− kt+1)

2σ2
t + k2

t+1s
2
t+1. (35)

Subtracting equation (10) from equation (35) and dividing both sides by σ2
0 , we find

σ2
t+1 − τ2

t+1

σ2
0

= (1− kt+1)
2σ

2
t − τ2

t

σ2
0

.

Therefore, the sequence (1 − xt)
2 and the sequence (τ2

t − σ2
t )/σ2

0 solve the same linear difference equation.
Because, τ0 = 0, they also have the same initial condition, implying that

σ2
t − τ2

t

σ2
0

= (1− xt)
2 =

σ4
t

σ4
0

.

Rearranging, we obtain τ2
t = σ2

0xt(1− xt), which is equation (10) of the Proposition.

A.2 Proof of Proposition 2
Equation (9) implies that ujt is a linear combination of wj1, wj2, . . . , wjt. By the induction hypothesis, all
of the wj1, . . . , wjt are independent from θ. Since εjt is also independent from θ, our hypothesis (H2) that
wit+1 is independent from θ is verified.

The last thing to verify is hypothesis (H3). First consider any s ≤ t and some ℓ ∈ [0, 1]. Since ℓ 6= j
almost surely, our induction hypothesis implies that wℓs is almost surely independent from wj1, wj2, . . . , wjt,
and hence from ujt (which is a linear combination of . Since wℓs is also independent from εjt, our hypothesis
that wℓs is independent from wit+1 is verified. Now we have for any ℓ 6= i:

wℓt+1 =
1

xt

(

unt +
1

Gt

εnt

)

,

for some n ∈ [0, 1] which is almost surely different from j. Our induction hypothesis implies that the
sequences wj1, . . . , wjt and the sequences wn1, . . . , wnt are independent from one another, and therefore that
unt is independent from ujt. Since by assumption εjt is independent from εnt, our induction hypothesis that
wℓt+1 is independent from wit+1 is verified.

Taking the variance of both sides of (18), substituting (16), we find

s2t+1 = σ2
0

xt(1− xt) + α(1− bxt)
2/(1− b)2

x2
t

(36)

for all t ∈ {1, 2, . . .}, with α ≡ σ2
ε/σ

2
0 . Plugging (36) into (11) and rearranging gives the result. At time t = 0

we have that

σ2
1

σ2
0

=

(

1 +
σ2

0

s21

)−1

meaning that x1 = s21/(s
2
1 + σ2

0), so we can also think of x1 as a primitive.
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A.3 Proof of Proposition 4

The average belief is θ̂t = (1− xt)θ̄ + xtθ, implying that |θ̂t+1 − θ̂t| = (xt+1 − xt)|θ − θ̄|. Now the recursion
for xt can be written xt+1 = xt + h(xt). Some simple algebra shows that

∂h

∂x
=

x(1− x)2
(1− b)2(x(1− x2) + α(1− bx)2/(1− b)2)2P (x),

where

P (x) = (1− b)2x(1− 2x− x2) + 2α(1− bx)1− 2x+ bx2

1− x

≡ (1− b)2xR(x) + 2α(1− bx) T (x)

1− x.

Evidently, P (0) = 2α and P (x) → −∞ when x → 1. So there exists some x∗ ∈ (0, 1) such that P (x∗) = 0.
Note that R( · ) (respectively) T ( · ) has only one root xR (respectively xT ) in the interval [0, 1]. Because
R(x) < T (x), we must have xR < xT . Given that R(x∗) and T (x∗) must have opposite signs, it follows that
x∗ ∈ (xR, xT ). Now,

P ′(x∗) = (1− b)2R(x∗) + (1− b)2x∗R′(x∗)− 2αb
T (x∗)

1− x∗

+2α(1− bx∗) (1− x∗)T ′(x∗) + T (x∗)

(1− x∗)2 .

The first three terms are negative because xR > x∗ implies that R(x∗) < 0, because R′(x∗) < 0, and because
x∗ < xT implies that T (x∗) > 0. As for the last term, we have

(1− x∗)T ′(x∗) + T (x∗) = −1 + 2bx− bx2 ≤ −1 + 2bx− b2x2 ≤ −(1− bx)2 ≤ 0,

because b ∈ (0, 1). Therefore, it follows that P ′(x∗) < 0, establishing that x∗ is the only zero of P ( · ) over the
interval [0, 1]. The above analysis shows that xt+1 − xt ≡ h(xt) is increasing for xt ∈ (0, x∗), and decreasing
for xt ∈ (x∗, 1). The time ts of the Proposition is then largest time t such that xt ≤ ts.

A.4 Proof of Proposition 6

We start with the change of variable πt ≡ 1/σ2
t . Then, it follows from equation (7) that

πt+1 = πt +
1

s2t+1

.

In turns, equation (19) shows that

1

s2t+1

= π0

(

1− π0

πt

)2











(

1− π0

πt

)

π0

πt

+ α

[

1− b
(

1− π0

πt

)]2

[1− b]2











−1

=
π0

α
(πt − π0)

2

{

(πt − π0)π0

α
+

[πt − b(πt − π0)]
2

[1− b]2

}−1

=
π0

α
(πt − π0)

2

{

(πt − π0)
2 + π0

[

(πt − π0)

(

1

α
+

2

1− b

)

+
π0

(1− b)2
]}−1

=
π0

α







1−
π0

[

(πt − π0)
(

2α+(1−b)
α(1−b) + π0

(1−b)2

)]

(πt − π0)2 + π0

(

(πt − π0)
2α+1−b
α(1−b) + π0

(1−b)2

)







=
π0

α

{

1− π0(2α+ 1− b)
α(1− b)

[

1

πt

+O

(

1

π2
t

)]}

,
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Now, plugging back α = σ2
ε/σ

2
0 = π0/πε into the last equation, we obtain

πt+1 = πt + πε

[

1− 1

πt

(

πε +
2π0

1− b

)]

+O

(

1

π2
t

)

. (37)

We already know that πt → +∞ as t→ +∞. Hence, there is a T such that, for all t ≥ T ,

πε

[

1− 1

πt

(

πε +
2π0

1− b

)]

+O

(

1

π2
t

)

≥ πε

2
,

implying that πt+1 ≥ πt + πε/2. Summing from T to t ≥ T , we obtain that πt ≥ πT + πε/2 (t− T )
for all t ≥ T , and therefore that 1/πt = O(1/t) as t goes to infinity. Plugging this back into (37) gives
πt+1 = πt + πε +O (1/t). Summing over times then implies that

πt = πεt+O(log(t)). (38)

Taking the inverse of (38) gives

1

πt

=
1

πεt

[

1 +O

(

log(t)

t

)]−1

=
1

πεt
+O

(

log(t)

t2

)

,

where the last equality follows because log(t)/t goes to zero as t goes to infinity. Plugging back this last
equation into (37) provides

πt+1 = πt + πε

{

1−
[

1

πεt
+O

(

log(t)

t2

])(

πε +
2π0

1− b

)}

+O

(

1

t2

)

. (39)

Summing over times once again shows that

πt = πεt−
(

πε +
2π0

1− b

)

log(t) +O(1), (40)

where the O(1) term follows from the fact that the series 1/t2 and log(t)/t2 are absolutely convergent. The
Proposition then follows directly from inverting (40).

A.5 Proof of Lemma 2
After making the change of variable yt = (1 − b)xt/(1 − xt), the ordinary differential equation (25) can be
written

ẏt = γ

(

yt

1 + yt

)2

=
γ

G′(yt)
(41)

where γ ≡ (1− b)σ2
0/σ̃

2
ε and G( · ) is the strictly increasing function G (y) ≡ y − 1/y + 2 log (y). Multiplying

both sides of (41) by G′(yt) and integrating from s = 1 to s = t shows that the solution yt of the ODE is
defined implicitly by

γ(t− 1) = G (yt)−G (y1) . (42)

plugging xt = yt/(1−b+yt) and yt = G−1 (γ(t− 1) +G(y1)) back into the integral (24), we make the change
of variable t− 1 = 1/γ(G(y)−G(y1). We obtain, after some algebra, the formula of the Lemma.

A.6 Proof of Theorem 1
Let δ = σ̃2

ε/s
2
1. Because y1 = (1− b)σ2

0/s
2
1, welfare increases in σ2

0 if and only if

V (y1) = −
∫ ∞

y1

(1 + (1− b)y)
(1− b) y2

e−rδ
G(y)−G(y1)

y1 dy
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is increasing in y1. Taking the derivative with respect to y1, we obtain

V ′(y1) =

(

1 + (1− b)y1
y2
1(1− b)

)

−
∫ ∞

y1

(

1 + (1− b)y
y2(1− b)

)

∂

∂y1

(

−rδ [G(y)−G(y1)]

y1

)

e−rδ
[G(y)−G(y1)]

y1 dy.

Using the fact that
∫ ∞

y1
rδG′(y)

y1
e−rδ

[G(y)−G(y1)]
y1 dy = 1 we get that

V ′(y1) =
∫ ∞

y1

[(

1 + (1− b)y1
y2
1(1− b)

)

G′(y)

y1
−

(

1 + (1− b)y
y2(1− b)

)

∂

∂y1

(

− [G(y)−G(y1)]

y1

)]

rδe−rδ
[G(y)−G(y1)]

y1 dy,

which can be written more compactly as into:

V ′(y1) =

∫ ∞

y1

G′ (y)

y1
Φ(y, y1)rδe

−rδ
[G(y)−G(y1)]

y1 dy,

where

Φ(y, y1) =

(

1 + (1− b)y1
y2
1(1− b)

)

−
(

1 + (1− b)y
y2(1− b)

)

1

G′ (y)

[G(y)−G(y1)]

y1
−

(

1 + (1− b)y
y2(1− b)

)

G′ (y1)

G′ (y)

Because G′ (y) = (1+y)2

y2 , we have

Φ(y, y1)(1− b) =

(

1 + (1− b)y1
y2
1

)

−
(

1 + (1− b)y
(1 + y)2

)

G(y)−G(y1)

y1
−

(

1 + (1− b)y
(1 + y)2

)

G′ (y1)

So calculating the limit when y →∞, we find that

lim
y→∞

Φ(y, y1)(1− b) =

(

1 + (1− b)y1
y2
1

)

− 1− b
y1

=
1

y2
1

> 0.

Therefore there exists some ε > 0 and some y∗ ∈ (y1,∞) such that Φ(y, y1) > ε for all y ≥ y∗. Then we can
write

V ′(y1) =

∫ y∗

y1

Φ(y, y1)
G′(y)

y1
rδe−rδ

G(y)−G(y1)
y1 dy

+

∫ ∞

y∗

Φ(y, y1)
G′(y)

y1
rδe−rδ

G(y)−G(y1)
y1 dy

≥
∫ y∗

y1

Φ(y, y1)
G′(y)

y1
rδe−rδ

G(y)−G(y1)
y1 dy

+ε

∫ ∞

y∗

G′(y)

y1
rδe−rδ

G(y)−G(y1)
y1 dy

Now remember that δ = σ̃2
ε/s

2
1 and take the limit as rσ̃2

ε goes to zero, to find that

lim
rσ̃2

ε→0

∫ y∗

y1

Φ(y, y1)
G′(y)

y1
rδe−rδ

G(y)−G(y1)
y1 dy = 0, (43)

after noticing that |Φ(y, y1)| is continuous and hence bounded for over [y1, y
∗], with y1 > 0. On the other

hand, the second term is

ε

∫ ∞

y∗

G′(y)

y1
rδe−rδ

G(y)−G(y1)
y1 dy = εe−rδ

G(y∗)−G(y1)
y1

[

−e−rδ
G(y)−G(y∗)

y1

∣

∣

∣

∣

∞

y∗

]

= εe−rδ
G(y∗)−G(y1)

y1 ≥ 0. (44)

Taken together, (43) and (44) imply that

lim
rσ̃2

ε→0
V ′(y1) ≥ ε > 0

and we are done.
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A.7 Proof of Proposition 7
Taking derivatives shows that

∂u

∂x
=
√
γ − γ/2 (45)

∂u

∂γ
= x

(

1

2
√
γ
− 1

2

)

(46)

∂g

∂x
=

α2 + x(1− x)
[

2αγ(2− x) + 2γ2x(1− x)
]

[α+ γx(1− x2)]
2 (47)

∂g

∂γ
= α

x2(1− x)2

[α+ γx(1− x2)]
2 (48)

∂u

∂x

∂g

∂γ
− ∂u

∂γ

∂g

∂x
(49)

=
1

D

(

(
√
γ − γ/2)αx2(1− x)2 (50)

−x/2(1/
√
γ − 1)(α2 + x(1− x)(2αγ(2− x) + 2γ2x(1− x))

)

,

where D =
[

α+ γx(1− x2)
]2

. Given that
√
γ − γ/2 ≥ √γ − γ, a sufficient condition for (49) to be strictly

positive is

(

1√
γ
− 1

)

(

γαx2(1− x)2 − x/2(α2 + 2αγx(1− x)(2− x) + 2γ2x(1− x))
)

> 0

⇔
(

1√
γ
− 1

)

(

γαx(1− x)
(

x− x2 − 2x+ x2
)

− x/2(α2 + 2γ2x(1− x))
)

> 0

⇔
(

1− 1√
γ

)

(

γαx2(1− x) + x/2(α2 + 2γ2x(1− x))
)

> 0 (51)

Now let’s consider an initial condition x1 ∈ (0, 1) together with some optimal control c.4 The associated
sequence of state is {xc

t}t≥1. Let’s also consider some other initial condition x̂1 > x1. We have

W (x̂1)−W (x1) = W (x̂1)− U(x1, c) ≥ U(x̂1, ĉ)− U(x1, c), (52)

for any admissible control ĉ. We pick ĉ such that U(x̂1, ĉ) > U(x1, c), as follows: we let γ̂t = 1 as long as
g(x̂c

t , 1) ≥ g(xc
t , γt). At the first time τ such that g(x̂c

τ , 1) < g(xc
τ , γτ ), we choose the γ̂τ solving g(x̂τ , γ̂τ ) =

g(xc
τ , γτ ). Thereafter, for all t > τ , we let γ̂t = γt. To summarize, for all t < τ , γ̂t = 1 and x̂c

t ≥ xc
t . For

t = τ , 1 < γ̂τ ≤ γτ and x̂c
τ ≥ xc

τ . For t > τ , γ̂t = γt and x̂c
t = xc

t . Therefore, we have

U(x̂1, ĉ)− U(x1, c)

1− β =

τ−1
∑

t=1

βt (u(x̂c
t , 1)− u(xc

t , γt)) + βτ (u(x̂c
τ , γ̂τ )− u(xc

t , γt)) . (53)

The first τ −1 terms are all strictly positive because maxγ≥0 u(x, γ) = u(x, 1) = x/2 which is increasing in x.
Because x̂c

τ+1 = xc
τ+1, the time-τ term can be written v(x̂c

τ )−v(xc
τ ) where v(x) = u(x, ψ(x)) and ψ(x) solves

g(x, ψ(x)) = xc
τ+1. An application of the Implicit Function Theorem (see, e.g. Taylor and Mann (1983))

shows that ψ′(x) = −(∂g/∂x)/(∂g/∂γ) < 0. Hence

v′(x) =
∂u

∂x
− ∂u

∂γ

∂g/∂x

∂g/∂γ
.

4Existence of an optimal control follows from the dynamic programming argument of Proposition 8
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Because ∂g/∂γ > 0, this shows that v′(x) > 0 if and only if

∂u

∂x

∂g

∂γ
− ∂u

∂γ

∂g

∂x
> 0. (54)

Now we note that, by construction, ψ(x̂c
t) > 1. Because ψ( · ) is decreasing, ψ(x) > 1 for all x ∈ [xc

τ , x̂
c
τ ].

Using (54) and (51), one can see that v′(x) > 0 for all x ∈ [xc
τ , x̂

c
τ ]. Therefore, the time-τ term of (53) is also

strictly positive. This shows that the value function is strictly increasing.
For the second part of the proof, we note that if τ > 1 in equation (53), then (52) shows that

W (x̂1)−W (x1)

1− β ≥ u(x̂1, 1)− u(x1, γ1) ≥ u(x̂1, 1)− u(x1, 1) =
1

2
(x̂1 − x1) , (55)

where the second inequality follows because u(x, · ) is maximized at γ = 1. If, on the other hand, τ = 1 in
equation (53), then (52) implies that

W (x̂1)−W (x1)

1− β ≥ v(x̂1)− v(x1) ≥
v′(x1)

2
(x̂1 − x1), (56)

for x̂1 close enough to x1, and where v( · ) is the function defined above. Lettingm ≡ (1−β)min{v′(x1)/2, 1/2}
completes the proof.

A.8 Proof of Lemma 3
Part (i) We have

(1− β)u(x, γ) + βf ◦ g(x, γ)
≤ (1− β)u(x, γ) + β/2 = (1− β)x(

√
γ − γ/2) + β/2. (57)

This means that, given some x ∈ (0, 1], for γ ≥ γ̄, the left-hand side of (57) is negative. Since the right-hand
side of (32) is positive at γ = 0, it follows that the suppremum over R+ is equal to the suppremum over the
compact [0, γ̄]. Because of continuity, the supremum is achieved.

Part (ii). Continuity of Tf follows from the Theorem of the Maximum (see Theorem 3.6 in Stokey and
Lucas (1989)). Lastly, because u(x, γ) ≤ x/2 ≤ 1/2, we have Tf ≤ 1/2.

Part (iii) In this paragraph we show how to pick some (k, η) ∈ R
2
+ such that, if f satisfies the Lipschitz

property (33), then Tf also satisfies it. Consider some (k, η) ∈ R
2
+ and pick some x ∈ (0, η). Let γ be a

maximizer of (32) at x. For any γ′ < γ, we have

(1− β)u(x, γ)− (1− β)u(x, γ′) + βf ◦ g(x, γ)− βf ◦ g(x, γ′) ≥ 0

⇒ (1− β)u(x, γ)− (1− β)u(x, γ′) + βk(g(x, γ)− g(x, γ′)) ≥ 0

⇒ (1− β)
∂u

∂γ
(x, γ) + βk

∂g

∂γ
(x, γ) ≥ 0

⇒ (1− β)
x

2

(

1√
γ
− 1

)

+ βk
αx2(1− x)2

[α+ γx(1− x2)]2

⇒ (1− β)
x

2

(

1√
γ
− 1

)

+
β

α
kx2(1− x)2 ≥ 0 (58)

⇒ γ ≤ 1− β
[1− β − 2βk/αx(1− x)2]2 ≡ φ(k, x), (59)

for η small enough. In the above, the first line follows because γ is a maximizer of (32), the second line
follows from (33) together with the fact that g(x, γ) is increasing in γ, the third line follows from dividing
both side by γ − γ′ ≥ 0 and letting γ′ → γ, the fourth line follows by substituting in the expression (45)
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and (48) for the partial derivatives, the fifth line follows from α + γx(1 − x2) ≥ α, and the last line from
rearranging, noting that x > 0 and that, if η is small enough, then 1− β − 2β/αkx(1− x)2 is positive for all
x ∈ (0, η). Now consider 0 < x < x′ < η. Let γ and γ′ the respective maximizers of (32). We have

Tf(x′)− Tf(x)

= (1− β)u(x′, γ′) + βf ◦ g(x′, γ′)− (1− β)u(x, γ)− βf ◦ g(x, γ)
= (1− β)u(x′, γ′)− (1− β)u(x, γ′) + βf ◦ g(x′, γ′)− βf ◦ g(x, γ′)

+(1− β)u(x, γ′) + βf ◦ g(x, γ′)− (1− β)u(x, γ)− βf ◦ g(x, γ)
≤ (1− β)u(x′, γ′)− (1− β)u(x, γ′) + βf ◦ g(x′, γ′)− βf ◦ g(x, γ′) (60)

≤ (1− β)(x′ − x)
(

√

γ′ − γ′/2
)

+ βk (g(x′, γ′)− g(x, γ′)) (61)

≤ (1− β)(x′ − x)/2 + βk
∂g

∂x
(x′′, γ′) (x′ − x) . (62)

where x′′ ∈ [x, x′]. In the above, inequality (60) follows because γ maximizes (32) at x, inequality (61)
follows because of (33), and inequality (62) follows because

√
γ−γ/2 < 1/2 together with a first-order Taylor

expansion of g( · , γ′). Hence, it follows from (62) that a sufficient condition for the Lipschitz condition (33)
to hold for Tf is

(1− β)/2 + βk
∂g

∂x
(x′′, γ′) ≤ k

⇔ k(1− β ∂g
∂x

(x′′, γ′)) ≥ (1− β)/2. (63)

Now we also have

∂g

∂x
(x′′, γ′) =

α2 + 2x′′(1− x′′)
(

αγ(2− x′′) + γ2x′′(1− x′′)
)

[α+ γ′x′′(1− x′′2)]2
≤ 1 + 2x′′(1− x′′)

[

γ′/α(2− x′′) + γ′2/α2x′′(1− x′′)
]

≤ 1 + 2x′′(1− x′′)
[

φ(x′, k)/α(2− x′′) + φ(x′, k)2/αx′(1− x′)
]

≡ ψ(x′, x′′, k),

where φ(x, k) is the function defined in equation (59). Therefore, a sufficient condition for (63) to hold is
that

k (1− βψ(x′, x′′, k)) ≥ (1− β)/2 (64)

for all (x′, x′′) ∈ [0, η]2. Now let k = 1. Then, because ψ(0, 0, k) = 1, (64) is satisfied when x′ = x′′ = 0
with a strict inequality. By continuity, there exists η > 0 such that, (64) holds for all (x′, x′′) ∈ [0, η]2. This
completes the proof.

A.9 Proof of proposition 9

[i] Γ(x) ⊆ (1,∞) for x ∈ (0, 1). Take some x ∈ [0, 1] and consider the function

w(γ) ≡ (1− β)u(x, γ) + βW ◦ g(x, γ). (65)

Note that W ( · ) and g(x, · ) are both strictly increasing functions. Since u(x, · ) is increasing for γ ∈ [0, 1),
it follows that w( · ) is strictly increasing in γ ∈ [0, 1), implying that Γ(x) ⊆ [1,∞).

Then, for γ > 1 and close enough to 1, we have

w(γ)− w(1) = (1− β)u(x, γ)− (1− β)u(x, 1) + βW ◦ g(x, γ)− βW ◦ g(x, 1)

≥ (1− β)u(x, γ)− (1− β)u(x, 1) + βm (g(x, γ)− g(x, 1)) ,

for some m > 0 given by the second part of Proposition 7. Dividing both sides of the equation by γ − 1, and
letting γ go to 1 shows that

lim
γ→1

w(γ)− w(1)

γ − 1
= 0 + βm

∂g

∂γ
(x, 1) > 0,

which shows that γ = 1 cannot maximize w(γ). Therefore, Γ(x) ⊂ (1,∞).
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[ii]. Convergence of the state We already know that, when γ = 1 for all t, the state x1
t converges

towards one as t goes to infinity. Suppose that the planner chooses an optimal control γ∗t ∈ Γ(x∗t ). Because
γ∗t ∈ [0, 1] and because g is decreasing in γ, we have x∗t+1 ≥ g(x∗t , 1). By induction, this implies that
1 ≥ x∗t ≥ x1

t . Therefore, x∗t goes to 1 as time goes to infinity.

[iii]. Convergence of the control Suppose x1 = 1. Then, xt+1 = xt = 1 for all time: at each
time, the planner has to solve a static optimization problem whose unique solution is γt = 1. This shows
in turns that Γ(1) = {1}. Now suppose that the planner chooses an optimal control γ∗t ∈ Γ(x∗t ). Because
γ∗t ∈ [0, 1] it has a converging subsequence γ∗tk

. Since x∗tk
goes to one, and since (by the Theorem of the

Maximum) the correspondence Γ is upper hemicontinuous, we know that lim ρ∗tk
∈ Φ(1) = {1}. Hence, the

only accumulation point of the sequence γ∗t is 1. Therefore, the sequence γ∗t goes to one.

[iv]. Non-monotonicity Equation (59) shows that, for all x ∈ (0, η), γ ∈ Γ(x) implies that γ ≤
φ(x, k). Since φ(0, k) = 1 and γ ≥ 1, this implies that Γ(x) goes to 1 as x goes to 1. Namely, for all sequence
xk → 1 and all γk ∈ Γ(xk), we have γk → 1.

B Learning without Observational Noise
This appendix solves for information diffusion and welfare when agents can observe each others’ action
without the exogenous informational noise. Equation (20) shows that, when α = σ2

ǫ /σ
2
0 = 0,

1− xt+1 =
1− xt

1 + xt

,

for t ∈ {1, 2, . . .}. Since σ2
t = σ2

0(1− xt), we obtain

σ2
t+1 =

σ2
t

2− σ2
t /σ

2
0

.

Now, with the change of variable πt = 1/σ2
t , we obtain that πt+1 = 2πt − π0. Therefore, πt+1 = π0 +

2t (π1 − π0). Plugging back the initial condition that π1 = π0 + 1/s21, we obtain that

σ2
t =

σ2
0s

2
1

s21 + 2t−1σ2
0

, (66)

for t ∈ {1, 2, . . .}. Taken together, these calculations imply

Lemma 4. If σ2
ε = 0, then, asymptotically σ2

t ∼ s21/2
t. Let’s consider σ0(1)2 < σ0(2)2 and denote the

subsequent sequence of variances be {σ2
t (k)}∞t=1. Then, for all t ∈ {1, 2, . . .}, we find that σ2

t (1) ≤ σ2
t (2).

One can easily verify that, without informational noise, the time path of the distribution of beliefs also has
a S-shaped mean and a hump-shaped variance. However, two other features of the learning dynamics are
sharply different than with informational noise. First, analysts learn much faster, at the geometric rate 1/2t

instead of the linear rate 1/t. Second, the impact of public information is unambiguous: it never slows down
the diffusion of private information and always improves welfare.

C Welfare Cost in Discrete Time
This appendix provides numerical calculations suggesting that the properties of the continuous-time model of
section 3.4 also holds in the discrete-time model that we study in the rest of the paper. The parameters are
chosen in the spirit of our continuous-time limit: namely, we choose a large observational noise σ2

ǫ = 100 and
a discount factor β = 0.995 that is close to one. We also set s21 = 199 as in our previous numerical examples.
Figure 7 shows the discrete-time social welfare as a function of σ2

0 . Its shape turns out to be similar to
that of the continuous-time social welfare of Figure 3. This suggests in particular that the non-monotonicity
property of Theorem 1 also holds in discrete time.
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Figure 7: Welfare in the discrete-time model as a function of σ2
0.
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