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I Co-movements between Aggregate Shocks and Output

The assumption that money is separable from consumption and leisure in the utility func-

tion of the household is a useful benchmark, because it implies that, under perfect infor-

mation, any type of nominal disturbance (that is, any shocks to M or V) would have no

real effects. We now show that under imperfect information, as in Lucas (1972), workers

are confused regarding the underlying shocks, and nominal disturbances now have real

effects.

Using the fact that y = v− p and the result of Proposition 1, we have:

y =
δ

1+ δ

Ψv

Ψ
v+

(

1− δ

1+ δ

Ψv

Ψ

)

θ

Ω
− K0,

and given that δΨv < (1+ δ)Ψ, velocity and productivity shocks are expansionary.

Proposition I.1. In a linear equilibrium, the covariance between v and y and the covariance

between θ and y are both strictly positive. Both of these covariances are also higher than under full

information.

Under full information, velocity shocks do not affect aggregate output; thus, their co-

variance with output is zero. Proposition I.1 shows that, under imperfect information,

velocity shocks have real effects. When a positive velocity shock is realized, final and in-

termediate goods prices increase. However, because of the aggregate technology shock, θ,

workers cannot infer the exact realization of the velocity shock from these price increases.

This generates a version of the confusion problem in Lucas (1972): workers do not at-

tribute the full extent of the increase in prices to the velocity shock, so they mistakenly

infer that part of the observed increase in the intermediate price signal, v+ ai, is caused

by an increase in local demand, ai. This boosts their labor supply and increases aggregate

output.

Under full information, aggregate output should respond one-to-one to shocks on the

technology parameter θ (as, given our specification, these aggregate productivity shocks

do not affect labor supply). Proposition I.1 reveals that, under imperfect information,

output is more responsive to technological shocks. Indeed, when a positive productivity

shock occurs, workers attribute some of the resulting decrease in prices to a fall in ve-

locity. But given that the signal received by the workers, v + ai, has not changed, they

infer that local demand is relatively high, which generates an expansion of labor sup-

ply. The effect on aggregate output thus will be bigger under partial information because

aggregate labor is now responding positively to a technology shock.
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Proof of Proposition I.1

In the general CRRA-CES specification, we use that γy = v− p and get:

y =
δ

(1+ γδ)

Ψ̄v

Ψ
v+

(

1+ δ

1+ γδ
+

δ

1+ γδ

ΩΨ̄θ

Ψ

)

θ − δ
Ψθ − Ψ̄θ

(1+ γδ)Ψ
Ωηθ − δ

Ψv − Ψ̄v

(1+ γδ)Ψ
ηv

+
δ + φ

2(φ − 1)(1+ γδ)
Ξ +

δ

2(1+ γδ)

(

1

Ψ
− 1

ψa

)

(I.1)

which implies that the correlation between y and v, or between y and θ, are strictly posi-

tive.

Note that the correlation between velocity shocks and output under perfect informa-

tion is zero (as can be seen above by taking the limit as Ψ → ∞). Similarly, the corre-

lation between productivity shocks and output is bigger than under full information, as

under full information the elasticity of output with respect to the productivity shock is

(1+ δ)/(1+ γδ).

Letting γ = 1, φ = 1 and Ψ̄v = Ψv and Ψ̄θ = Ψθ , delivers the result.

II Macro versus Micro Labor-supply Elasticity

Proposition 4 shows that public information is welfare reducing only if the labor supply,

δ, is sufficiently high. There is lot of disagreement about the value of this parameter: em-

pirical micro estimates result in low values of the elasticity, while macro studies generate

much larger values.

II.1 An Extension with Frictional Unemployment

We will show below that it is this larger macro elasticity that matters for information

aggregation and for the welfare effects of public announcements. To make this point we

introduce here a simple extension of our model with frictional unemployment, where the

micro and macro elasticity are allowed to differ: the micro elasticity controls the intensive

margin (the choice of hours worked per job) while the macro elasticity also incorporates

the extensive margin (the number of filled jobs). We show that the elasticity that matters

for learning and welfare is the macro elasticity: that is, how total hours per sector respond

to shocks will determine the sensitivity of the equilibrium prices to private information,

and ultimately the way thatworkers learn from each other. In particular, if onewere to use

the micro elasticity instead of the macro elasticity in our key equilibrium equation, then

one would obtain the wrong equilibrium equations and the wrong welfare prescriptions.
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We make the following change to our basic model: we assume that the representative

family is extended to encompass a continuum of intermediate good producers in each

sector. In order to produce intermediate goods, workers in each sector need to bematched

with intermediate goods producers, and these producers can post vacancies at a utility

cost κ > 0 in their sectors. Let Vi denote the measure of vacancies posted in sector i,

and let Ni denote the number of employed workers in sector i. Then the utility of the

representative family is:

E0

[

∞

∑
t=0

βt
(

logCt +
1

V
log

Md
t−1

Pt
− δ

1+ δ

∫ 1

0
NitL

1+ 1
δ

it di− κ
∫ 1

0
Vi di

)

]

,

subject to the same budget constraint as before, except that the real value of intermediate

good production is now equal to
∫

PitΘiNitLit/Pt di. Again, we will concentrate in the

first period and drop the time subscript. First, note that the equilibrium equations (1), (2),

and (3) remain unaltered, as do their log linearized versions (7), (8), and (9). Thus, all that

is left to be determined is the new supply equation for intermediate good.

We assume that the matching process occurs within a given intermediate good sector.

To simplify the analysis we further assume that matches last only one period.1 Let the

probability that a vacancy matches with a worker in sector i be q(Vi) ≡ µV−α
i , where

α ∈ (0, 1) and µ > 0.2 A law-of-large-numbers argument will imply that the total number

of matches between workers and vacancies in sector i is:

Ni = Viq(Vi) = µV1−α
i . (II.2)

When a worker and an intermediate good producer meet, they negotiate over the num-

ber of hours worked, Li, and over compensation. We assume that both workers and

intermediate good producers share the same information set, and seek to maximize their

contribution to household welfare. Because of identical information sets and marginal

utilities for money balances, Ei[λ/P], the surplus of one-period long worker-producer

relationship is:

Ei

[

λ

P
PiΘiLi

]

− δ

1+ δ
L
1+ 1

δ
i .

1This assumption preserves the static nature of our model and leads to closed-form solutions for the
number of filled jobs. Clearly, in a quantitative analysis, it would be important to relax it.

2If the measure of vacancies is low, this matching function has the unpleasant implication that q(Vi) ≥ 1,
i.e. the matching probability is greater than 1. Keep in mind, however, that we can always pick parameter
values so that, in equilibrium, q(Vi) ≤ 1 in most sectors.
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Based on Hall’s (2009) argument that firms and workers should choose the amount of

hours efficiently, it follows that Li is chosen to maximize the surplus:

L
1
δ
i = Ei

[

λ

P

]

PiΘi = Ei

[

β

1− β

1

MV

]

PiΘi, (II.3)

where, as before, the second equality follows from the quantity equation (2).

Assuming a generalized Nash-Bargaining over compensation, the payment received

by the firm is some share ρ ∈ [0, 1] of the surplus:

ρ

(

Ei

[

λ

P

]

PiΘiLi −
δ

1+ δ
L
1+ 1

δ
i

)

=
ρ

1+ δ
L
1+ 1

δ
i ,

where the equality follows after substituting in the surplus maximizing labor supply as

shown in equation (II.3).

Intermediate goods producers will post infinite vacancies (or zero) if their expected

compensation per vacancy is above (or below) the vacancy creation cost κ. Thus, in equi-

librium:

κ = µV−α
i

ρ

1+ δ
L
1+ 1

δ
i . (II.4)

From equations (II.2) and (II.4), and after normalizing µ
1

1−α ρ = κ(1 + δ), we find that

Ni = L
1+δ
αδ (1−α)
i .3 Total production of intermediate i then is Yi = ΘiNiLi, which after using

(II.3), yields a supply equation for the intermediate good:

Yi = Θi

(

Ei

[ β

1− β

1

MV

]

ΘiPi

)δ+ (1−α)(1+δ)
α

,

that is identical to equation (4) except for a different Frisch elasticity parameter, δ̂:

δ̂ ≡ δ +
(1− α)(1+ δ)

α
> δ.

Given that the remaining equilibrium equations, (1), (2), and (3), do not change, the

characterization of linear equilibria is the same as in Proposition 1, but replacing themicro

labor supply elasticity parameter, δ, with the higher macro elasticity parameter defined

above, δ̂. Importantly, we show below that the same is also true for welfare:

Proposition II.1. In the economy with frictional unemployment, public information increases

3This normalization is without loss of generality for the results that follow.
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ex-ante utilitarian welfare if and only if it increases the posterior precision about v, ψa + Ω2
⋆
ψθ +

Ψv + Ω2
⋆
Ψθ , where Ω⋆ is the highest fixed point of:

Ω =
1

1+ δ̂
+

δ̂

1+ δ̂

ψa + Ω2ψθ

Ψv + Ω2Ψθ + ψa + Ω2ψθ
where δ̂ ≡ δ +

(1− α)(1+ δ)

α
> δ.

Proof of Proposition II.1

The only thing left to show is that the welfare analysis is the same as before. Clearly, the

expected utility of output and real balance is the same as before, again after replacing δ

by δ̂. Let us turn, then, to the remaining term in the utilitarian welfare function:

−E

[

δ

1+ δ

∫ 1

0
NiL

1+ 1
δ

i di+ κ
∫ 1

0
Vi di

]

. (II.5)

First, note that, in equilibrium,

Ni = L
(1−α)(1+δ)

αδ
i ⇒ NiL

1+ 1
δ

i = L
1+δ
αδ
i .

At the same time,

Ni = µV1−α
i ⇒ κVi = µ− 1

1−α κL
1+δ
αδ
i =

ρ

1+ δ
L

1+δ
αδ
i .

Thus, (II.5) is equal to:

−ρ + δ

1+ δ
E

[

∫ 1

0
NiL

1+ 1
δ

i

]

Now, proceeding as before, we can write that:

E

[

∫ 1

0
NiL

1+ 1
δ

i di

]

=E

[

E

[

NiL
1+ 1

δ
i | v, θ

]]

= E

[

NiL
1+ 1

δ
i

]

= E

[

NiLiEi

[

λ
Pi
P

Θi

]]

=E

[

NiLiλ
Pi
P

Θi

]

= E

[

YiY
−γ ∂Y

∂Yi

]

= E

[

Y−γ
E

[

Yi
∂Y

∂Yi
| v, θ

]]

=E

[

Y−γ
∫ 1

0
Yi

∂Y

∂Yi
di

]

= E

[

Y1−γ
]

.
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So, (II.5) is equal to:

−ρ + δ

1+ δ
E

[

Y1−γ
]

,

and the rest of the analysis goes through.

III Bond market

A familiar way in which an economy aggregates dispersed private information is through

financial markets. One might wonder, then, how robust the results regarding the social

value of public announcements that we have obtained are to the introduction of a fi-

nancial market where households from different locations can interact. To answer this

question, we introduce what we believe is a natural financial market in our economy:

households are allowed to trade a nominal bond in zero net supply when deciding con-

sumption, and the price of such bond is observed by all agents. Our main result is that

the equilibrium nominal interest rate in the financial market does not provide any new

information to the workers and that the allocation obtained by a competitive equilibrium

when the bond market is closed remains the allocation of a competitive equilibrium once

it is opened.

Thus, suppose that the shopper at period t can buy a bond that pays a unit of the

currency in the following period, t + 1, and let us denote by Qt its nominal price. The

budget constraint of the household i in period t is now given by

Ct +
Md

t

Pt
+

Bt

Pt
Qt ≤

∫ 1

0

Pit
Pt

ΘiLit +
Md

it−1

Pit
+

Bt−1

Pit
, (III.6)

where Bt is the amount of the bond held by the representative family. The bond market

clearing condition imposes that Bt = 0 for all t ≥ 0.

We now check that the allocation without a nominal bond market remains an equi-

librium once the nominal bond market opens. Because the shopper is acting under full

information, her Euler equation is:

Qt = β
u′(Ct+1)

u′(Ct)

Pt
Pt+1

= β
λt+1

Pt+1

Pt
λt

,

where, from the first-order conditions, u′(Ct) = λt. From the equation (2) it then follows
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that

Qt = β

Note that the price of the bond does not reveal any information: it is just equal to the

discount factor. Thus, any equilibrium allocation when the bondmarket is closed remains

an equilibrium when the bond market is open with Bt = 0 and Qt = β.

IV Large Idiosyncratic Shocks

A recent literature has documented that idiosyncratic variations in prices (and other

quantities) are an order-of-magnitude bigger than aggregate variations (see, among oth-

ers, Bils and Klenow, 2004). Hence, one may argue that the main concern of economic

agents is to optimally respond to their idiosyncratic shocks and, as a result, that fore-

casting macroeconomic shocks may not matter much for their welfare. In this section we

show that contrary to this view, our welfare results are robust to arbitrarily large levels of

idiosyncratic price volatility.

Suppose that the productivity parameter now includes a perfectly observed and purely

idiosyncratic component. That is, the productivity in sector i is now Θ̂i = Θi exp(gi)

where Θi is as before and where gi is an idiosyncratic shock generated from a normal

distribution with mean zero and constant variance and independent across sectors. We

assume that the individual realization of gi is observed perfectly by workers in location

i. The equilibrium equations (7), (8) and (9) are unchanged, and only the supply of inter-

mediate goods is affected: in equation (10), θ̂i replaces θi. An similar argument to the one

in the paper implies that prices are:

pi =
1

1+ δ

(

v+ ai −
1

2ψa

)

+
δ

1+ δ

(

Ei [v]−
Vi [v]

2

)

− θi − gi. (IV.7)

Note that a higher variance of gi will generate higher cross-sectional dispersion of prices

(given expectations). However, given that gi is known to worker i, and that it has a cross-

sectional average equal to zero, its presence in the intermediate good price equation has

no effect on the signal extraction problem that workers face, and thus would not affect the

resulting equilibrium fixed-point equation nor the cross-sectional dispersion of expecta-

tions about the velocity shock. It then follows that any level of idiosyncratic variation can

be added to the model by changing the variance of gi without affecting our previous anal-

ysis, including the welfare result stated in Section 5. We interpret this as follows: the fact
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that there is a large idiosyncratic component to the individual decisions does not imply

that the welfare effects of announcements regarding the underlying aggregate shocks are

necessarily trivialized. In particular, in the present example, idiosyncratic volatility does

not affect the welfare calculations at all.

V A Full Analysis of the Fixed-point Equation

For a given precision vector (Ψθ ,Ψv,ψθ,ψv), we let M be, for some fixed vector of the

private information precisions (ψθ,ψv), the set of (Ψθ ,Ψv) such that there are multiple

(more than one) equilibria. We start by noting that the set function M is homogeneous

of degree one: when (ψθ ,ψv) is scaled by some µ > 0, the set M is scaled by the same

constant. Indeed scaling all precision parameters (ψθ ,ψv,Ψθ,Ψv) up and down by the

same constant does not change the fixed point equation for Ω⋆, so it does not change the

set of equilibrium Ω⋆. This means that multiplicity does not depend on the absolute level

of information, but on how the information is divided among the different sources.

Our main proposition is:

Proposition V.1. For all (ψv,ψθ) such that

(

δ

1+ δ

)2
ψθ

ψv

[

(

1− 2
1

δγ

)3
− 27

( 1

δγ

)2
]

> 27, (V.8)

the set M is delimitated by continuous, strictly positive, strictly decreasing upper and lower

boundaries

U(Ψθ) = max{Ψv : (ΨθΨv) ∈ M}
L(Ψθ) = min{Ψv : (Ψθ ,Ψv) ∈ M},

defined for all Ψθ less than some upper bound Ψmax
θ satisfying L(Ψmax

θ ) = U(Ψmax
θ ).

This proposition is illustrated in Figure 1, which shows the set M in the (Ψθ ,Ψv)

plane. Multiple equilibria arise when (Ψθ ,Ψv) lies in between the two boundaries. The

boundaries are strictly positive. Thus, when (Ψθ ,Ψv) is small enough, there is a unique

equilibrium and a mild increase in the public information vector may create multiplicity.

Figure 2 shows graphically how changing public information distorts the fixed-point

equation and can create multiple equilibria. For a low value of Ψθ , complementarities

are strong and the right-hand-side of the fixed-point equation has a sharply increasing
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Ψθ

Ψv

The set M

Ψmax
θ

Figure 1: The set M and its boundaries.

S-shape; it has a unique intersection with the 45-degree line in the upper branch of the

S. For a middle value of Ψθ , the S-shape rises more slowly and three intersections arise.

When Ψθ is large, the S becomes decreasing and a unique intersection is obtained. A

similar graphical analysis applies to changes in Ψv.

Ω

Low Ψθ

Middle Ψθ

High Ψθ

Figure 2: The impact of changing Ψθ on the fixed-point equilibrium equation.

The following proposition accounts for all equilibria:
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Proposition V.2. Given (ψθ ,ψv) satisfying (V.8), then

1. for all (Ψθ ,Ψv) in the interior of M, there are three equilibria, ΩL < ΩM < ΩH;

2. for all (Ψθ ,Ψv) either on the upper or lower boundaries of M, there are two distinct equi-

libria, ΩL < ΩH; for (Ψ
max
θ ,U(Ψmax

θ )), there is only one;

3. as (Ψθ ,Ψv) approaches the lower boundary from below, the unique equilibrium converges to

ΩH;

4. as (Ψθ ,Ψv) approaches the upper boundary from above, the unique equilibrium converges

to ΩL.

Thus, in the interior of the multiple equilibrium region, M, there are three equilibria.

Note that there are two distinct equilibria on the boundaries of M but, just outside M,

there is a unique equilibrium. Hence, as one enters M, at least one “new” equilibrium

must appear. This is what is demonstrated by the third and fourth points of the proposi-

tion: a strictly lower equilibrium, ΩL, appears as one enters M from below, and a strictly

higher equilibrium, ΩH, appears as one enters M from above.

V.1 Public Information and Total Knowledge

Ψθ

Ψv

Ψmax
θ

Γ(Ψθ)

Figure 3: The solid line is the boundary Ψv = Γ(Ψθ) above which welfare decreases in
(Ψθ ,Ψv). The dotted line shows the boundaries of the set M.
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We now explain the impact of increasing public information on workers’ posterior

precision about v:

ψv + ψθΩ2 + Ψv + ΨθΩ2,

what we call “total knowledge.”

Proposition V.3 (Knowledge in the (Ψθ ,Ψv) plane). Suppose that households coordinate on

the highest knowledge equilibrium and fix some (ψθ ,ψv). Let, for (∆0,∆1) ∈ R
2
+,

Γ(Ψθ) = max {0,∆0 − ∆1Ψθ ,U(Ψθ)} wheneverU(Ψθ) is defined

= max {0,∆0 − ∆1Ψθ} otherwise,

Then, there exists (∆0,∆1) ∈ R
2
+ such that, when Ψv 6= U(Ψθ), workers’ posterior precision

about v decreases continuously in (Ψθ ,Ψv) if and only if Ψv < Γ(Ψθ). When, Ψv = U(Ψθ),

welfare jumps down.

The boundary Γ(Ψθ) is shown in Figure 3. Along any increasing curve in the (Ψθ ,Ψv)

plane that passes through the origin, total knowledge will have a U shape: it will decrease

first, reach a minimumwhen crossing the boundary Ψv = Γ(Ψθ) from below, and increase

thereafter. Note also that the curve may cross the boundary Ψv = U(Ψθ) before or at the

same time as the boundary Ψv = Γ(Ψθ). At that crossing point, the high equilibrium

disappears and total knowledge will have a negative jump.

One may suspect that total knowledge can decrease only when there are multiple

equilibria coupled with that fact that we have arbitrarily chosen to focus on the highest

knowledge equilibrium. The proposition clarifies that it is not the case: for example,

below the set M, the equilibrium is unique and total knowledge decreases.

VI Proofs

VI.1 Proof of Propositions V.1 and V.2

Recall that the fixed point equation is:

Ω =
1

(1+ δ)γ
+

δ

1+ δ

ψv + Ω2ψθ

Ψv + Ω2Ψθ + ψv + Ω2ψθ
,
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where ψv = ψa/(γφ). We start making a change of variable:

A ≡ Ω(1+ δ)

δ
− 1

δγ
and we let κ ≡ 1

δγ
.

Note that, while Ω belongs to the interval ( 1
γ(1+δ)

, 1+δγ
γ(1+δ)

), A belongs to the interval (0, 1).

In terms of our newly defined variable, A, the fixed point equation becomes:

A =
ψv +

(

δ
1+δ

)2
(A+ κ)2ψθ

Ψv +
(

δ
1+δ

)2
(A+ κ)2Ψθ + ψv +

(

δ
1+δ

)2
(A+ κ)2ψθ

Next, we let:

λ ≡
(

δ

1+ δ

)2 ψθ

ψv
, ρv ≡

Ψv

ψv
, and ρθ ≡ Ψθ

ψθ
,

so that the fixed point equation becomes:

A =
1+ λ(A+ κ)2

ρv + λρθ(A+ κ)2 + 1+ λ(A+ κ)2
(VI.9)

This equation is equivalent to:

ρv = G(A, ρθ) ≡ −(1+ ρθ)λ(A+ κ)2 +
λ

A
(A+ κ)2 +

1

A
− 1

= −(1− 2κλ + κ2λ(1+ ρθ)) +
1+ κ2λ

A
+ λ(1− 2κ(1+ ρθ))A− λ(1+ ρθ)A

2.

Then, clearly:

(R1) G(A, ρθ) goes to infinity as A goes to zero.

(R2) G(1, ρθ) = −(1+ κ)2λρθ < 0.

Taking derivatives we have find that ∂G/∂A = D(A, ρθ)/A
2 where:

D(A, ρθ) = −1− κ2λ + (λ − 2κλ(1+ ρθ))A
2 − 2λ(1+ ρθ)A

3

∂D(A, ρθ)

∂A
= 2λA [1− 2κ(1+ ρθ)− 3A(1+ ρθ)]

Note as well that D(0, ρθ) = −(1+ κ2λ) < 0 andD(1, ρθ) = −1− (1+ κ)λ(1+ κ + 2ρθ) <

0. If 1− 2κ(1 + ρθ) > 0, then D(A, ρθ) is a hump-shaped function of A, with a unique
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maximum at A =
1−2κ(1+ρθ)
3(1+ρθ)

< 1. If 1− 2κ(1+ ρθ) ≤ 0, then D is strictly decreasing, and

thus the maximum is D(0, ρθ). Then we have that:

max
A∈[0,1]

D(A, ρθ) =











−(1+ λκ2) +
λ (1− 2κ(1+ ρθ))

3

27(1+ ρθ)2
; if 1− 2κ(1+ ρθ) > 0.

−(1+ λκ2) ; if 1− 2κ(1+ ρθ) ≤ 0

If follows that the function G(A, ρθ) is strictly decreasing in A ∈ [0, 1] if and only if the

maximum of D(A, ρθ) is negative, or if and only if

F(ρθ) ≡
λ(1− 2κ(1+ ρθ))

3

27(1+ ρθ)2
< 1+ λκ2. (VI.10)

One easily sees that, if the inequality holds for ρθ = 0, then it also holds for all ρθ. Indeed,

if F(0) < 0, then F(ρθ) < 0 for all ρθ > 0, and the inequality holds for all ρθ > 0. If

F(0) > 0, then F(ρθ) is decreasing when it is positive, so it achieves its maximum at

ρθ = 0. Summing up, we find that the maximum of D(A, ρθ) is negative for all ρθ if

F(0) ≤ 1+ λκ2 ⇔ λ(1− 2κ)3 ≤ 27(1+ λκ2) ⇔ λ
[

(1− 2κ)3 − 27κ2
]

≤ 27

Otherwise, if this condition is not satisfied, we have the following situation: F(0) > 1+

λκ2, F(ρθ) is strictly decreasing when it is positive, and F(ρθ) < 1 + λκ2 for ρθ large

enough. It follows that there exists a unique ρ̄θ such that F(ρθ) < 1+ λκ2 if and only if

ρθ > ρ̄θ . Wrapping up, we can say:

(R3) If λ
[

(1− 2κ)3 − 27κ2
]

≤ 27 or
(

λ
[

(1− 2κ)3 − 27κ2
]

> 27 and ρθ ≥ ρ̄θ

)

, then

G(A, ρθ) is strictly decreasing in A ∈ (0, 1).

(R4) If
(

λ
[

(1− 2κ)3 − 27κ2
]

> 27 and ρθ < ρ̄θ

)

, then there exist two functions a1(ρθ) and

a2(ρθ) such that:

0 < a1(ρθ) <
1− 2κ(1+ ρθ)

3(1+ ρθ)
< a2(ρθ) < 1

and G(A, ρθ) is decreasing in A ∈ (0, a1(ρθ)), increasing in A ∈ (a1(ρθ), a2(ρθ)), and

decreasing again in A ∈ (a2(ρθ), 1).

(R5) The function a1(ρθ) is increasing in ρθ while a2(ρθ) is decreasing.

This follows from noticing that an increase in ρθ reduces D(A, ρθ) for all A ∈ (0, 1).
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The hump-shape of D(A, ρθ) together with the fact that a1(ρθ) and a2(ρθ) are zeros of

D(A, ρθ) delivers the result.

(R6) As ρθ approaches ρ̄θ , both a1(ρθ) and a2(ρθ) tend to
1−2κ(1+ρθ)
3(1+ρθ)

.

Indeed consider a sequence of ρθ converging to ρθ . The corresponding sequence of

a1(ρθ) is increasing and bounded above (below), so it must converge as ρθ → ρ̄θ . Let the

limit be ā1. By continuity given that a1(ρθ) is a zero of D(A, ρθ), it follows that D(ā1, ρ̄θ) =

0. But the result follows because, when ρθ = ρ̄θ the maximum of D(A, ρθ) is zero and is

achieved uniquely at A =
1−2κ(1+ρθ )
3(1+ρθ)

. A similar argument can be applied to determine the

limit of a2(ρθ) as ρθ → ρ̄θ .

Nowwe are ready to describe all the solutions of the equationG(A, ρθ) = ρv. Note that

(R1) and (R2) implies that there is at least one solution in the interval (0, 1). In case (R3),

the function G(A, ρθ) is strictly decreasing in A so that solution is unique. In the other

case, (R4), we start by defining B(1)(ρθ) ≡ G(a1(ρθ), ρθ) and B(2)(ρθ) ≡ G(a2(ρθ), ρθ). We

have the following:

(R7) The function B(i)(ρθ) is strictly decreasing in ρθ for i ∈ {1, 2}.

The proof of (R7) follows by noticing that by construction
∂G(A,ρθ)

∂A

∣

∣

∣

A=ai
= 0. So it

follows that:

dB(i)

dρθ
=

∂G(i)(A, ρθ)

∂ρθ

∣

∣

∣

∣

∣

A=ai

= −(ai(ρθ) + κ)2λ < 0. (VI.11)

Now the set of equilibria can be described graphically, as follows. Figure 4 shows a

plot of G(A, ρθ) as a function of A. The local minimum is achieved at A = a1(ρθ) and is

equal to B(1)(ρθ), and the local maximum is achieved at a2(ρθ) and is equal to B(2)(ρθ).

The figure makes it clear that

• if ρv < B(1)(ρθ), then there is a unique equilibrium, which is greater than a2(ρθ);

• if ρv = B(1)(ρθ), then there are two equilibria, AL = a1(ρθ) < a2(ρθ) < AH;

• if B(1)(ρθ) < ρv < B(2)(ρθ), then there are three equilibria AL < a1(ρθ) < AM <

a2(ρθ) < AH ;

• if ρv = B(2)(ρθ), then there are two equilibria, AL < a1(ρθ) < a2(ρθ) = AH;

• if ρv > B(2)(ρθ), then there is a unique equilibrium, which is smaller than a1(ρθ).
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A

ρv

1

0

0

B(1)(ρθ)

B(2)(ρθ)

G(A, ρθ)

a value of ρv for which

there are three equilibria

a1(ρθ) a2(ρθ)

Figure 4: The function G(A, ρθ).

The equilibrium A then maps into the equilibrium Ω according to the equation Ω =
δ

1+δ

(

A+ 1
γδ

)

. Replacing ρθ = Ψθ/ψθ , ρv = Ψv/ψv, we find that the set M is described

parametrically by:

0 ≤ Ψθ < Ψmax
θ

and L(Ψθ) ≤ Ψv ≤ U(Ψθ),

where:

Ψmax
θ ≡ ρ̄θψθ

L(Ψθ) = ψvB
(1)

(

Ψθ

ψθ

)

U(Ψθ) = ψvB
(2)

(

Ψθ

ψθ

)

.

Note that L(Ψθ) and U(Ψθ) are implicit functions of (ψθ ,ψv). By (R7), the boundaries

L(Ψθ) and U(Ψθ) are decreasing functions of Ψθ . Also, because a2(ρθ) is decreasing, it

follows from (VI.11) that B(2)(ρθ) is convex. Lastly, by (R6), we have that L(Ψmax
θ ) =

U(Ψmax
θ ).

Now the first two points of Proposition V.2 follow from (R8)-(R12). The last two points

follow from an application of the IFT on the boundaries. Namely, on the upper boundary,

one applies the IFT at A = AL, because ∂G/∂A(AL) < 0. This shows that the unique equi-
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librium above the boundary converges towards AL as (Ψθ ,Ψv) approaches the boundary

from above. Note that the reasoning does not apply to the other equilibrium, AH : in-

deed, because ∂G/∂A(AH) = 0, one cannot apply the IFT at A = AH. Similarly, on the

lower boundary, one applies the IFT to A = AH, but cannot apply it at A = AL because

∂G/∂(AL) = 0.

VI.2 Proof of Proposition V.3

We keep all the notations of the previous proof and let A⋆ denotes the largest fixed point

of equation (VI.9), corresponding to the highest-knowledge equilibrium. Using this equa-

tion, the household’s posterior precision about v can be written:

Π = ψv

(

ρv + ρθλ (A⋆ + κ)2 + 1+ λ (A⋆ + κ)2
)

.

Using the fixed-point equation, we find that:

Π

ψv
=

1

A⋆

+
λ(A⋆ + κ)2

A⋆

.

Taking derivatives with respect to A⋆, one finds that

∂Π

∂A⋆

=
−(1+ λκ2) + λA2

⋆

A2
⋆

,

Now recall that A⋆ is decreasing in both Ψθ and Ψv. Given our description of the equi-

librium set, along an increasing path of Ψθ and Ψv, A⋆ is continuous except at the upper

frontier where it jumps down. It then follows that,

(R13) If A⋆ is continuous, then a marginal increase in public information reduces total

knowledge if and only if A⋆ > α(λ, κ) ≡
√
1/λ + κ2.

In what follows, to simplify notations, we suppress the explicit dependence of α(λ, κ) on

(λ, κ). Now we show:

(R14) Suppose there is a unique equilibrium. Then, a marginal increase in public infor-

mation decreases total knowledge if and only if

ρv < C0 − C1ρθ ≡ C(ρθ),

where C0 =
[

1+ λ (α + κ)2
]

[1/α − 1] and C1 = λ (α + κ)2.
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Indeed, recall that if there is a unique equilibrium, A⋆ is continuous, and the best reply

is above the 45-degree line for all A < A⋆ and below the 45-degree line for all A > A⋆.

Thus, α < A⋆ if and only if, when A = α, the best reply is above the 45-degree line.

Plugging A = α in the fixed point equation and rearranging, one obtains the condition

(R14).

Now consider parameters λ and ρθ such that there are multiple equilibria. We start by

showing:

(R15) Suppose
(

λ
[

(1− 2κ)3 − 27κ2
]

> 27 and ρθ < ρ̄θ

)

. Then, a1(ρθ) > α.

Indeed, note that D(A, ρθ) = −λα2 + λA2 + negative terms. Therefore, if A ≤ α, then

D(A, ρθ) < 0. Since D(A, ρθ) is negative for A < a1(ρθ) and positive for a1(ρθ) < A <

a2(ρθ), it thus follows that α < a1(ρθ). Next, we prove:

(R16) Suppose
(

λ
[

(1− 2κ)3 − 27κ2
]

> 27 and ρθ < ρ̄θ

)

. Then, for all ρv < B(2)(ρθ), total

knowledge decreases continuously with public information.

Indeed, first recall from (R8) that for all ρv < B(1)(ρθ), there is a unique equilibrium,

A⋆, that is larger than a2(ρθ), and thus larger than a1(ρθ). Next, for all B(1)(ρθ) ≤ ρv <

B(2)(ρθ), the largest equilibrium, A⋆, is also larger than a1(ρθ). Because (R15) showed that

a1(ρθ) > α, it follows that for all ρv < B(2)(ρθ), A⋆ > α. Thus, from (R13), we know that,

for all ρv < B(2)(ρθ), a marginal increase in public information reduces total knowledge.

Taken together, (R14) and (R16), we can generalize to:

(R17) Total knowledge decreases continuously with public information if and only if

ρv < max{B(2)(ρθ),C(ρθ)} whenever B(2)(ρθ) is defined

ρv < C(ρθ) otherwise.

total knowledge jumps down with public information if and only if ρv = B(2)(ρθ).

Indeed if B(2)(ρθ) is not defined then this is the same as (R14). If B(2)(ρθ) is de-

fined, let’s start with the “only if” part. If public information continuously decreases

total knowledge, then either (i) ρv < B(2)(ρθ) or (ii) ρv > B(2)(ρθ), the equilibrium is

unique and by (R14), ρv < C(ρθ). Either way, ρv < max{B(2)(ρθ),C(ρθ)}. For the “if”

part, suppose that ρv < max{B(2)(ρθ),C(ρθ)}. Then, either ρθ ≤ B(2)(ρθ) and by (R17)

a marginal increase in public information decreases total knowledge. Or ρv > B(2)(ρθ)
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and ρv < C(ρθ), the equilibrium is unique, and a marginal increase in public informa-

tion decreases total knowledge. The last point follows directly from the fact that, when

ρv = B(2)(ρθ), the aggregate weight A⋆ jumps down.

The Proposition follows by setting

∆0 = ψθC0

∆1 = ψθC1.

An Additional Result for Drawing Figure 3

We now characterize further the shape of the boundary. Namely, we show

Lemma VI.1. Suppose
(

λ
[

(1− 2κ)3 − 27κ2
]

> 27 and ρθ < ρ̄θ

)

. Then, there exists ρ̂θ ∈
[0, ρ̄θ] such that B

(2)(ρθ) > C(ρθ) if and only if ρθ < ρ̂θ .

In words, the lemma says that B(2)(ρθ) is above C(ρθ) when ρθ is less than ρ̂θ and

below C(ρθ) thereafter. So the boundary of result (R17) coincides with B(2)(ρθ) for low

values of ρθ , and with C(ρθ) for high values. Also, it can be that ρ̂θ = 0; in that case,

C(ρθ) > B(2)(ρθ) all along.

We now proceed to prove the lemma, starting with

(R18) Suppose
(

λ
[

(1− 2κ)3 − 27κ2
]

> 27 and ρθ < ρ̄θ

)

. Then, B(2)(ρθ) < C(ρθ) if and

only if, when ρv = C(ρθ), there is a unique equilibrium.

Consider first the “only if” part. Suppose that B(2)(ρθ) < C(ρθ) and let ρv = C(ρθ).

Then, ρv > B(2)(ρθ) so by (R12) there is a unique equilibrium. We proceed with the “if”

part. Suppose that, when ρv = C(ρθ), there is a unique equilibrium. Thus, (ρθ , ρv) could

be either above the upper boundary, i.e., ρv > B(2)(ρθ), or below the lower boundary, i.e.,

ρv < B(1)(ρθ). But, if (ρθ , ρv) were below the lower boundary, then, by (R16), a marginal

increase in ρθ would result in a marginal decrease total knowledge, which is impossible

because ρv = C(ρθ). Next, we show:

(R19) Let ρv = C(ρθ). Then, there is more than one equilibrium if and only if ρθ ≤ ρ̂θ ≤ ρ̄θ ,

where ρ̂θ ≡ max
{

0,maxA≥0

{

A−α
A(A+α+2κ)

}

− 1
}

.

Indeed, consider the equilibrium equation G(A, ρθ) = ρv, when ρv = C(ρθ). By con-

struction, when ρv = C(ρθ), A = α solves the fixed point equation. Moreover, straight-
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forward algebraic manipulations of the fixed point equation shows that

G(A, ρθ) = C(ρθ)

⇔A

[

1+ λ(α + κ)2

α
+ λ(1+ ρθ)

(

(A+ κ)2 − (α + κ)2
)

]

= 1+ λ(A+ κ)2

⇔
[

A− α + λA(α + κ)2 − λα(A+ κ)2
]

+ λAα(1+ ρθ)
(

(A+ κ)2 − (α + κ)2
)

= 0

⇔
[

A− α + λ
(

Aα2 + Aκ2 − αA2 − ακ2
)]

+ λAα(1+ ρθ)(A− α)(A+ α + 2κ) = 0

⇔ (A− α)
(

1+ λκ2 − λαA
)

+ λAα(1+ ρθ)(A− α)(A+ α + 2κ) = 0

⇔ (A− α) λα (α − A) + λAα(1+ ρθ)(A− α)(A+ α + 2κ) = 0

⇔λα (A− α)
[

α − A+ A(1+ ρθ)(A+ α + 2κ)
]

= 0,

where we used λα2 = 1+ λκ2 in order to move from the third-to-last to the second-to-last

line. Note that the term in square bracket is strictly positive when A ≤ α. Therefore, we

have more than one equilibrium if and only if the term in square bracket has a zero. Or, if

and only if there exists A > α such that

1+ ρθ =
A− α

A(A+ α + 2κ)
.

Clearly, this equation has a solution if and only if 1+ ρθ is less than the maximum of

the right-hand side. Note that, if there exists some ρv such that there is more than one

equilibrium, then we already know from (R4) that ρθ ≤ ρ̄θ . Thus, it follows that ρ̂θ ≤ ρ̄θ .
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