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The choice of sovereign-debt maturity in countries at risk of default 
represents a complex set of competing forces. The tradeoffs reflect the 
underlying frictions present in international sovereign-debt markets.

The primary frictions are the lack of state contingency in debt 
contracts and the inability of the government to commit to future 
actions. These generate two forces in terms of maturity choice. The first 
is that long-term bonds may be a useful tool for a government to hedge 
shocks to the cost of funds, say arising from business cycle fluctuations.  
However, the lack of contingency opens the door to default occurring 
in equilibrium. Because of the government’s inability to commit to 
future fiscal decisions, bondholders are subject to future dilution 
of their claims. This generates an opposite force: short-term bonds 
provide protection from future dilution and, as we shall see, provide 
better incentives to the government to minimize the costs of default. 

This trade-off between insurance and incentives is fundamental 
to the maturity choice but misses another element. The presence of a 
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significant stock of debt in short-maturity by itself generates another 
potential risk: it leaves the government vulnerable to self-fulfilling 
rollover crises. This is probably the main drawback of short-term 
debt —and perhaps the reason why so many restructurings involve 
lengthening the maturity structure. 

In this paper, we explore the advantage to a country of issuing 
long-maturity debt with a floating-rate coupon. Through both a simple 
analytical framework, as well as in a richer quantitative framework, 
we explore the relative benefits of such bonds. We show that having 
a coupon on a long-term bond indexed to one-period-ahead default 
probabilities provides all the incentive properties of one-period bonds, 
without the vulnerability to rollover risk. This can be implemented 
by indexing the coupon to the auction price of a small amount of one-
period bonds.

The framework we explore has both dilution and rollover risk. 
Dilution risk is well-known in the literature.1 Aguiar and others (2019) 
argue that when default risk is high, it is optimal for the government to 
issue only short-term bonds. This is the case in many real-world crises, 
as originally documented by Broner and others (2013). Indeed, Bocola 
and Dovis (2019) argue that the observed shortening of maturity of 
new issuances of Italian bonds implies a limited role for rollover risk 
in the European debt crisis. This runs counter to the conventional 
wisdom that developed in the wake of Mario Draghi’s “Whatever it 
takes” speech in the summer of 2012.

That wisdom holds that the crisis was a self-fulfilling run by 
creditors that was solved by the European Central Bank stepping in 
as the lender of last resort.

Rollover risk was a prominent theme after Mexico’s 1994–95 crisis. 
Cole and Kehoe (1996) and Cole and Kehoe (2000) used that crisis as a 
launching point for their model of rollover risk. Alesina and Tabellini 
(1990) provide an earlier analysis of self-fulfilling failed auctions. In 
fact, our discussion of dilution versus rollover risk mirrors that of 
Alesina and Tabellini (1990), who discuss the experience of floating-
rate Italian nominal bonds as the best response to weak inflation 
credibility and rollover risk.

Aguiar and Amador (2023) provide some evidence of the presence 
of rollover risk. In particular, they analyze market swaps that involve 
issuing long-term bonds to repurchase short-maturity bonds. For a case 

1. Chatterjee and Eyigungor (2012), Hatchondo and Martínez (2009), Arellano and 
Ramanarayanan (2012).
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involving the Dominican Republic in 2020, they show that the price of 
all bonds increases at the time of the swap, including those of the long-
term bonds being issued. They use an analytical framework similar 
to the one used below to argue that this is evidence that rollover risk 
is a prominent feature of the data. The environments we study hew 
fairly close to the quantitative sovereign-debt literature. The main 
source of risk is endowment risk, to which we add the possibility of a 
self-fulfilling failed auction. The calibration is based on the benchmark 
long-term bond paper, Chatterjee and Eyigungor (2012). We find that 
issuing floating-rate bonds eliminates the risk of a self-fulfilling run 
while preserving the incentives of one-period bonds. In particular, the 
government’s welfare in the floating-rate bond model in the presence 
of rollover risk is similar to that of a government with one-period 
bonds and zero chance of a rollover crisis. Moreover, the floating-
rate model dominates the fixed-rate long-term bond model. Welfare 
gains of switching to floating-rate bonds at zero debt are roughly one 
percent of consumption. A few caveats are in order to temper these 
conclusions. One is that we assume the government can auction small 
amounts of one-period bonds in order to index the coupon payments on 
the long-term floating-rate bond. This abstracts from liquidity issues 
in bond markets. Moreover, Alesina and Tabellini (1990) argue that 
there is evidence that the Italian benchmark-bond auctions may have 
been manipulated by the government, a possibility we omit from the 
analysis. Finally, we incorporate the hedging benefits of long-maturity 
bonds by having persistent income shocks. However, this omits other 
sources of risk that can be hedged by long-term bonds, such as shocks 
to risk premia or the risk-free rate.

While we focus on floating-rate bonds, other bond covenants can 
be used to deal with both dilution and rollover risk. Floating-rate debt 
is subject to its own source of multiplicity, as studied by Calvo (1988) 
and, more recently, Ayres and others (2018). Calvo argues that refusing 
to issue at a high interest rate can help select the best equilibrium. In 
this spirit, a cap on the coupon can mitigate the risk of this multiplicity, 
something we also discuss and incorporate in our analysis. Hatchondo 
and others (2016) discuss covenants that compensate legacy lenders 
for capital losses as a solution to dilution.

Finally, beyond contract covenants, fiscal rules2 have been proposed 
as the solution to dilution, and alternative auction protocols3 have 

2. For example, Hatchondo and others (2012).
3. For example, Chamon (2007).
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been proposed to remove rollover risk. The advantage of floating-rate 
bonds is that they do not require a commitment to enforce fiscal rules 
or other nonmarket mechanisms; instead, they rely only on competitive 
markets to deliver the beneficial features.

The paper is organized as follows. Section 1 introduces the general 
framework absent rollover risk, section 2 provides some analytical 
results on the efficiency of one-period bonds, section 3 introduces 
rollover risk, section 4 presents the results of the quantitative 
exercises, and section 5 concludes.

1. A GenerAl FrAmework

Our framework is based on the standard environment popular in 
the quantitative sovereign-debt literature.4 We extend this framework 
slightly by allowing for floating-rate-coupon bonds. We also alter the 
model to allow for rollover risk. For expositional reasons, we hold off 
on the rollover risk extension until after discussing key properties of 
the baseline model.

Consider a discrete-time, small open economy model. Time is 
indexed by t = 0,1,2... and the state of nature in time t is given by  

. The state will index output, default penalties, and, in the 
extension, include a sunspot that coordinates lenders’ beliefs. The state 
st follows a first-order Markov process. In each period, the economy 
receives a stochastic endowment yt = y(st) that takes values in some 
discrete, strictly positive, bounded set.

The economy is run by a government with preferences:

where ct is consumption of a freely traded good. We assume u is strictly 
increasing and strictly concave.

The government trades financial assets with competitive, risk-
neutral lenders who discount at rate R–1 = (1 + r)–1. We assume  
bR ≤ 1. Financial trade is restricted to a noncontingent bond. A 
bond is characterized by a maturity and a coupon. Each unit of debt 
matures with probability l  [0,1], which is iid across units. In any 

4. See Aguiar and Amador (2021) for a textbook treatment.
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nontrivial portfolio, we therefore assume the fraction l matures and 
the fraction 1 – l remains. The expected maturity is 1/l. When l = 1, 
we have one-period bonds, and when l = 0, we have a perpetuity. Such 
“perpetual-youth” bonds are a tractable approach to handling bonds of 
long maturity and have been used by Leland (1994), Hatchondo and 
Martínez (2009), and Chatterjee and Eyigungor (2012) among others.

Let b = bt+1 be the face value of debt at the end of period t and 
k the promised coupon. In t + 1 the government owes payments of  
(k + l)b in every state st+1. To rule out Ponzi schemes, let B denote some 
arbitrary upper bound on debt issuance and restrict b   = (– , B]. 
By making B such that promised payments are never greater than the 
natural debt limit, we ensure it never binds along the equilibrium path, 
and we will suppress the constraint from the notation going forward.

Figure 1. Within-Period Timing 

(a) Eaton-Gersovitz timing

(b) Cole-Kehoe timing

No default

Default 
decision

Default VD(s)

Next period

Auction
b' – (1 – l)b

at price
q(s,b')

Repay
(k + l)b,
VR(s,b)

Initial state: 
(s,b)

No default

Auction
b' – (1 – l)b

at price
q(s, b, b')

Repay
(k + l)b,

VR(s, b, b')
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(s,b)

VD(s)Default

Settlement

Next period
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We focus on Markov equilibria, in which equilibrium objects 
are functions of the exogenous state st as well as the government’s 
indebtedness. Let  denote the price schedule, and 

 denote the coupon schedule. The coupon is bounded 
above by a maximum k, which will be discussed in detail below. For 
both q and , the first argument refers to the date on which debt is 
issued and the coupon is promised, respectively. There is no ex-post 
contingency in the coupon payment once the state of the next period 
is realized.

We consider two timing conventions. The first is the “Eaton-
Gersovitz” (EG) timing, which is the standard in the literature since 
Aguiar and Gopinath (2006), Arellano (2008), and Hamann (2002). 
Under EG timing, depicted in panel (a) of figure 1, the government 
first observes nature’s draw of s, then commits to either repay or 
default on outstanding debt and then auctions off new bonds. In the 
alternative, “Cole-Kehoe” (CK) timing, the government, after observing 
s, first auctions new debt and then decides whether to repay or default 
on outstanding debt. The key distinction is whether the result of 
the auction plays a role in the repayment decision. In EG timing, 
repayment is independent of the realized auction price, while in CK 
repayment is contingent on the success or failure of a bond auction. 
We begin by discussing the equilibrium under EG timing.

1.1 The Government’s Problem

If the government defaults at time t in state s, we assume it receives 
value VD(s). In particular,

 (1)

The term y D(s) is the endowment received in default when 
the state is s  . This captures any punishment in terms of loss of 
endowment due to default as well as the fact that the government 
must consume hand-to-mouth while excluded from financial markets. 
With probability q, the government regains access to bond markets 
and starts anew with zero debt and value V (s', 0) in state s'. With 
probability 1 – q, the government remains in the default state.

If the government has opted to repay, the government’s value 
satisfies the following Bellman equation:
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 (2)

Here, the government takes the schedules q and  as given 
and optimally chooses b'. The continuation value reflects that the 
government has the option to default next period after observing 
s'. Given that k = (s,b) is pinned down in equilibrium by the 
states, we can redefine the government’s value as a function of  
(s, b) and the lagged state, (s–1). Henceforth, we write VR(s–1, s, b), with  
k = (s–1,b) being the coupon that is due in the current period.

Let  denote the optimal policy function of 
the government. Implicitly in problem (2), we are assuming 
that there exists a b' such that it is feasible to repay; that is,  
y(s) – (k – l) b + q (s, b') (b' – (1 – l)b) ≥ 0 for some b'  . If this is not 
the case, we set VR = –  so that the government defaults whenever 
repayment is infeasible.

Define V(s–1, s, b)  max{VR(s–1, s, b), VD(s)} to be the government’s 
value at the start of the period. The government repays if  
VR(s–1, s, b) ≥ VD(s) and defaults otherwise. Let  
denote the optimal default policy, with the value one indicating default 
and zero indicating repayment.

1.2 The Lenders’ Break-Even Condition

The restriction on equilibrium prices is that lenders break even 
in expectation. In particular:

 (3)

where k =  (s, b).
We consider two alternative coupon schedules. The standard 

approach is a constant coupon. In particular, define the “fixed-rate 
coupon schedule” as  (s, b) = k for all (s, b)   for some constant 
k ≤ k.
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The second is a floating-rate coupon. In particular, consider 
the equilibrium price of a one-period, zero-coupon bond given the 
equilibrium behavior of the government:

 (4)

Note that qs lies between zero and R–1. Define the “floating-rate 
coupon schedule” as:

 (5)

This coupon compensates the bondholder for the one-period-ahead 
risk of default. It is important to keep in mind that the equilibrium 
behavior is for an environment with a single bond of inverse maturity l 
and coupon ; unless l = 1, there is no short-term bond actively traded. 
Nevertheless, given this equilibrium behavior, we can construct a qs 
and . In particular, qs is the price that would obtain in equilibrium 
if an infinitesimal amount of one-period bonds were issued along with 
the benchmark bonds.

The equilibrium in the floating-rate model depends on , which, in 
turn, depends on the default policy function. We are looking for a fixed 
point for this mapping. There may be more than one, as we discuss at 
the end of this section.

1.3 Equilibrium

We are now ready to define an equilibrium:
Definition:Definition: An Eaton-Gersovitz equilibrium is a price schedule q, 

a coupon schedule , a value function VR with associated policies  
and , and a default value VD such that: (i) The lenders’ break-even 
condition (3) is satisfied given , , and ; (ii) given ,  is either fixed 
or determined by equations (4) and (5); (iii) given q and , VR solves 
the government’s Bellman equation (2) with optimal policy , (iv)  

 (s, b, k) = 1 if VR(s, b, k) < VD (s) and zero otherwise, and (v) given 
VR, VD, solves the recursion (1).
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1.4 Prices and Future Fiscal Policies

The two alternative coupon structures have different implications 
for how future fiscal policy affects bond prices. Under the fixed-rate 
schedule, equation (3) indicates that for l < 1 the debt-issuance policy 
function (s', b) affects the price of the non-maturing bonds next period 
and hence affects the price of bonds today. This is the standard channel 
in which lack of commitment to future fiscal policy potentially ‘dilutes’ 
existing bondholders and depresses the value of long-term bonds. We 
shall return to this below.

Now consider the floating-rate coupon. Suppose that in equilibrium 
  is such that there is an upper bound on the ergodic distribution 

of debt, Bmax< B. Moreover, suppose that . 
That is, along the equilibrium path, the government never issues debt 
to the point that it will default with probability one the next period. 
Both of these conditions are typically satisfied in standard quantitative 
sovereign-debt models. Then, if , a valid equilibrium price 
schedule is  for all  and b ≤ Bmax. To see this, define the 
price operator Tq by equation (3):

where the last line uses the definition of qs. This operator maps 
bounded functions on the domain  into itself, and  
satisfies the Blackwell conditions for a contraction. For any  such 
that  (s–1, s, b) ≤ Bmax on this domain, q = 1 is the unique fixed point 
of the price operator. In this scenario, the price is constant and, more 
importantly, independent of future fiscal policy.

As noted above, in the floating-rate case  is defined by qs, which 
in turn depends on equilibrium behavior. The latter depends on . 
There may be multiple fixed points of this mapping. This is multiplicity 
in the spirit of Calvo (1988). In particular, without the upper bound  
k, there is an equilibrium with zero borrowing. To see this, posit the 
schedule  (s, b) =  for all s  S and b > 0. For any b > 0, it is infeasible 
for the government to repay, and hence the government will default 
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with probability one, validating qs = 0 and  = . For this reason, we 
introduce the cap on coupons to rule out this extreme equilibrium. At 
this stage, we do not have sufficient conditions to ensure that there 
is a unique floating-rate equilibrium.

2. one-Period Bonds As A PlAnninG ProBlem

With long-term fixed-rate bonds, the existing bondholders are at 
the mercy of future fiscal policy. One-period fixed-rate bonds do not 
feature this risk. A useful way to see this advantage of one-period 
bonds is to consider the dual of problem (2), as done in Aguiar and 
Amador (2019).

Specifically, consider problem (2) for the case of l = 1 and normalize 
k = 0. Then (2) can be written as:

Because k = 0, we can drop the lagged s–1 as an argument for this 
exercise. As shown by Aguiar and Amador (2019), on the relevant 
domain for bonds,5 VR(s, b) is strictly decreasing in b for each s. Let 
B(s, v) denote the inverse of VR. That is,

VR(s, B(s, v)) = v.

Given the strict monotonicity of VR, B solves the dual problem:

5. By relevant domain, we mean the domain on which the government can 
feasibly repay. See Aguiar and Amador (2019) for more details.
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where 1x is the indicator function that equals one when x is true and 
zero otherwise, and where we have used the equilibrium condition  
q = R–1

 1{VR ≥ VD}. As VR(s, b') is strictly decreasing, the choice of b' is also 
the choice of the government’s continuation value. In particular, we can 
think of adding v(s') as a choice variable subject to the constraint that 
v(s') = VR(s', b') for all s' such that VR(s', b') ≥ VD (s'). This constraint is 
equivalent to B(s', v(s')) = b' for all s' such that v(s') ≥ VD (s'). This leads 
to the following problem:

 (6)

Problem (6) is similar to an optimal contracting problem. The 
principal (lender) chooses a sequence of consumption and continuation 
values for the agent (the government) subject to a promise-keeping 
constraint and the ‘spanning’ condition b' = B(s', v(s')). This last 
condition restricts the span of continuation values and reflects that 
the one-period bond is noncontingent.

The spanning constraint contains an equilibrium object (the 
inverse value function). An alternative maturity structure would 
involve a different restriction on spanning. It may be the case that 
long-term bonds allow for better hedging of risk, and a true planning 
problem will not be constrained from implementing such an allocation.

Aguiar and Amador (2019) note that equation (6) defines an 
operator that maps B in the spanning constraint into the B that equals 
the maximized payoff to lenders. They show that this mapping is a 
contraction and therefore there is a unique equilibrium in the one-
period bond model.6

Note that the Principal cannot prevent the government from 
walking away from the contract and taking the outside option VD. 

6.To do this, it is first necessary to relax the spanning condition to an inequality. 
See that paper for details. In addition, the result requires that there is no re-entry to 
financial markets after a default, that is, q = 0; so that vD is exogenously given. For an 
alternative contraction mapping approach, see also Bloise and Vailakis (2022).
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Nevertheless, absent default, the choice of c and b' maximizes the 
joint surplus conditional on the spanning condition. In particular, 
the equilibrium is the same regardless of whether the government 
or the lenders set fiscal policy, reflecting that incentives are aligned 
with one-period bonds.

This alignment of incentives is not true for long-term bonds, and 
we cannot write the long-term bond equilibrium as a pseudo-planning 
problem like (6). One way to see why not mechanically, is that there 
are three relevant variables for long-term bonds: the face value of debt 
b, the government’s value v, and the market value of debt q  b. With 
long-term bonds, the equilibrium q depends on future policies that are 
beyond the control of current actors (either lenders or the incumbent 
government). In the one-period bond model, absent default, the market 
value and face value coincide at the start of the period.

2.1 An Example

To provide a little more insight into why incentives are aligned 
regarding fiscal policy in the one-period bond model, we shut down the 
endowment fluctuation; that is, y(s) = y for all s  S. The only risk is the 
value of default VD(s), which we allow to vary with the state. Let s be 
iid over time and be such that VD(s) = vD is drawn from a continuous 
distribution with CDF F(vD) and support [ V , V ].

With this iid shock process, once the government decides to repay, 
the realized value of s is irrelevant, and we can drop it as a state 
variable. That is, VR(s, b) can be written VR(b), and its inverse is B(v). 
In the dual problem, there is a single continuation value v' and the 
spanning condition becomes b' = B(v'). In this case, we can substitute 
the spanning condition into the objective and use the fact that the 
government repays if vD ≤ v' to write the dual problem as:

This is a true planning problem, subject to limited participation 
of the government. The key distinction between this problem and 
the original (6) is that, without income fluctuations or persistence 
in the outside option, there is no risk that can be hedged. Bonds of 
any maturity will either be defaulted on or will have a price that is 
invariant to vD  conditional on repayment.
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The planner’s inverse Euler equation for this problem (assuming 
v'  (V , V )) is:

 (7)

where f = dF/dn and c' is next period’s consumption conditional on 
repayment and the optimal choice v'. To gain some intuition, set  
bR = 1 and let u(c) = log(c). We then have

The second term on the right-hand side is the marginal probability 
of default times the amount of debt. If this is strictly positive, then 
the optimal plan sets c < c'. That is, the optimal plan is to save. And 
the rate of saving is determined by the marginal decline in default 
probability. The greater f(v')/F(v'), the stronger the incentive to save 
at the margin. This reflects that the risk to the lender is the amount of 
debt outstanding times the probability of default. The optimal contract 
internalizes that saving reduces this risk.

Now recall that the optimal contracting problem is just an 
alternative view of the equilibrium in which the government makes 
all decisions. Why does the government want to reduce the risk of 
default? Keep in mind that the government strategically defaults, so 
at the moment of default, it captures an increase in value. Why not just 
wait for a high vD (say a bailout or forgivable default) and then default?

In equilibrium, it is the price schedule that aligns incentives. 
Specifically, q(b') = R–1F(VR(b')). Differentiating:

q'(b') = R–1 f (v')VR'(b'),

where v' = VR(b'). From the envelope condition, VR(b') = – u'(c') 
Substituting in, equation (7) becomes:

In the equilibrium, the government saves because q'(b') < 0, and 
it understands that, by saving, it will issue/roll over its bonds at a 



172 Mark Aguiar, Manuel Amador, and Ricardo Alves Monteiro

higher price. In particular, the government captures the entire benefit 
of reducing default risk via high prices, and therefore incentives are 
aligned between borrower and lender to minimize the risk of default.

Now, it is also the case that q'(b) < 0 with long-term bonds. 
However, the government is not rolling over its entire stock of debt. 
Thus, it does not internalize the entire cost of default to the lender, 
which involves new bonds as well as legacy bonds, and hence does not 
capture the entire benefit of reductions in default risk. At the extreme 
of a perpetuity, the government does not have to roll over any debt 
and has no incentive to reduce the risk of default. This is the sense 
that fiscal policy is inefficient with long-term bonds.

2.2 Floating Rate Bonds

With these insights in hand, we can now see one of the advantages 
of floating-rate bonds. In particular, if the coupon on the entire stock 
of debt reflects the default probability, the government has the same 
incentive to save as in the case of one-period bonds.

More formally, consider the case discussed in the previous section 
in which q(s, b) = 1 in a floating-rate equilibrium for a domain that 
encompasses the ergodic support, b ≤ Bmax. The government’s value 
conditional on repayment is VR(s–1, s, b). Recall that the original value 
function was written VR(s, b, k). For an equilibrium , we replaced k 
with s–1. To construct a pseudo-planning problem, we do not substitute 
out  but include it explicitly as a constraint in the dual problem. 
Specifically, let B(s, v, k) be the inverse of VR(s, b, k). The government’s 
budget constraint (with q(s, b') = 1) is: 

Let  and . The dual problem 
becomes:

 (8)

subject to:
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where we have suppressed the ergodic set constraint that v(s') must be 
such that b' = B(s', v(s'), k') ≤ Bmax, as it should not bind in this case. 

If we allow the pseudo-planner to “see through” the equilibrium 
, we can characterize the best equilibrium with a planning problem 

that is isomorphic to (6). This resolves the Calvo multiplicity in favor 
of the efficient outcome. Specifically, recall that

Replacing VR(s', b', k) with v(s'), we obtain:

.

Inspection of the value function (8) shows that we can drop k as 
an argument of B. Let B (s, v) represent the best possible equilibrium, 
then we have that B solves:

 (9)

subject to:

This is the same as problem (6). Thus, conditional on selecting the 
best equilibrium, the floating-rate bond provides all the same incentive 
and spanning features as the one-period bonds. The one caveat about 
the mapping from floating-rate to one-period bonds is the potential 
for Calvo multiplicity.

3. rollover risk

To introduce rollover risk, we alter the timing within a period as in 
Cole and Kehoe (2000). The government first auctions debt and then 
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decides to repay maturing debt. This timing makes the repayment 
decision contingent on the outcome of the auction.7

We begin with the fixed-rate coupon environment. Working 
backward through the period, suppose the government has issued  
b' – (1 – l) bonds at price q during the auction. At the time of settlement, 
the government’s value of repayment is:

where we have repurposed the notation to fit the current environment. 
We can let s index the price as well, so that q = q(s, b, b') and drop q 
as an argument of the repayment value.

The default payoff is the same as in the EG benchmark.8 The 
government defaults if VR(s, b, b') < VD(s). The government’s problem 
at the time of auction is:

.

Note that there is perfect foresight within a period, and hence the 
government knows what the payoffs to repayment and default are. 
Let  denote the debt-issuance policy, and 

 if  and zero otherwise.
To see the indeterminacy in this environment, consider fixing 

the continuation equilibrium. Specifically, hold the function  

sV(s', b') constant in the government’s problem, as well as future 
policies. Let q (s, b') be the break-even price conditional on repayment 
in the current period. That is,

Note that this is identical to (3); the only difference is that the 
policy functions may differ in an environment with rollover risk. This 
is the ‘good’ equilibrium.

To see the ‘crisis’ equilibrium, suppose that q(s, b, b') = 0 for all  
b' ≥ 0. In this case, for b' ≥ 0,

7. See panel (b) of figure 1.
8. For simplicity, we assume that if the government auctions debt at a positive price 

and then defaults, the auction proceeds are lost to both parties. On the equilibrium 
path, this never occurs.
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The government must pay the entire amount of maturing debt plus 
coupon out of current endowment. It then carries over non-maturing 
debt into the next period. This is a failed auction. If u(y(s) – (k + l)
b) + b V(s',(1 – l)b) < VD(s), then a zero price is consistent with the 
lenders’ break-even condition.9 The lenders see that the government 
will default at settlement, and refuse to pay a positive price at auction. 
Such a scenario is possible if (k + l)b is large relative to y.

For pairs of b such that both q = 0 and q = q  are possibilities, 
following Cole and Kehoe (2000) we let a sunspot coordinate beliefs. 
That is, s contains a random variable that takes a value of one for a 
crisis and zero otherwise.

In the case of short-term debt, l = 1, the debt burden is particularly 
painful after a rollover crisis. This is the logic behind why short-term 
debt makes a government particularly vulnerable to a rollover crisis. 
Conversely, if l = 0, for a given face value the repayment burden is 
light, and a crisis is possible only for very large b.

This sets up the canonical maturity dilemma. On the one hand, 
short-term debt provides correct incentives. On the other, it exposes the 
country to rollover risk, and, perhaps, offers less spanning of income 
risk. A floating-rate coupon bond provides the same incentives as one-
period debt, but defers the maturity payments, mitigating rollover 
risk. Indeed, if we ignore spanning (as in our simple model without 
income risk), then the floating-rate perpetuities offer the best of both 
worlds—correct incentives but limited rollover risk.10

The only drawback is that a long-term bond may provide better 
hedging of income and other potential risks, but this is a quantitative 
question. In the next section, we therefore turn to a quantitative model 
that incorporates floating-rate debt and noninsurable income risk.

4. A QuAntitAtive model

In this section, we introduce income risk as well as rollover risk 
in a quantitative model. We explore five alternatives: a one-period 
bond EG model (henceforth EG-ST); a one-period bond model with 
rollover risk (CK-ST); the same two environments but with long-term  

9. We assume the government cannot repurchase long-term bonds at zero price. 
See Aguiar and Amador (2013) for how this can be supported in equilibrium.

10. A floating-rate equilibrium is constructed in the presence of rollover risk along 
the same lines as in the benchmark EG model. That is, we price a one-period bond, 
which now must compensate lenders for rollover risk as well as ‘fundamental’ default 
risk and set the coupon to compensate lenders for that risk.



176 Mark Aguiar, Manuel Amador, and Ricardo Alves Monteiro

fixed-rate bonds (EG-LT and CK-LT); and finally a long-maturity 
floating-rate bond (FR) with rollover risk. As we shall see, the long-
maturity floating-rate bond eliminates the risk of a rollover crisis, 
so we do not need to present the floating-rate bond under the Eaton-
Gersovitz timing in addition to the Cole-Kehoe timing.

The benchmark parameterization is the same as Chatterjee and 
Eyigungor (2012) (henceforth, CE12).11 The model is quarterly. The 
underlying process for log income follows:

Following CE12, we set r = 0.95, se = 0.027 and sz = 0.01. The 
persistent process x is approximated by Tauchen’s method with a 
span of three standard deviations of the long-run distribution. The 
idd shock z is a truncated Normal with support [–2sz, + 2sz], and is 
included for computational reasons, as discussed by CE12. In default, 
the endowment is reduced by a quadratic factor. Specifically,

In the first period of default, we set z = z, its minimum value.
The government’s preferences consist of a constant relative risk 

aversion felicity with a risk-aversion parameter 2 and a discount factor 
b = 0.95. The risk-free interest rate is R = 1.01. 

The benchmark maturity is l = 0.05 or an expected maturity of 
20 quarters. For the one-period bond models, we set l = 1.0. We set  
k = 0.01 for all models with fixed-rate bonds. And let k = 0.06 in the 
baseline specification of the floating-rate bonds. 

Finally, in the environments with rollover risk, we set the 
probability of a sunspot to 10 percent quarterly, although the frequency 
of crises will be lower in equilibrium. A rollover crisis occurs only 
if the sunspot is realized and debt is large enough. We assume the 
 

11. The code and additional computational information is available at https://
github.com/manuelamador/floating-rate-debt.
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probability of a crisis is iid over time. See Bocola and Dovis (2019)
for a quantitative model in which the probability of a crisis follows a 
persistent process.

In table 1, we report ergodic moments for the five models, plus an 
additional floating-rate model in which k is set at 0.015, fifty basis 
points higher than the risk-free net interest rate of 0.01. A few things 
stand out. One is that with short-term debt, the presence of rollover 
risk looms large. Comparing EG-ST with CK-ST, debt is much lower 
in the latter, and one hundred percent of the defaults are due to 
self-fulfilling runs. With long-term debt, rollover risk is essentially 
nonexistent, but default is more frequent.

The floating-rate model generates few defaults, with the floating-
rate coupon addressing dilution and the long maturity essentially 
eliminating rollover risk. The corresponding moments for the floating 
rate and the EG-ST models are very similar.12 However, in the last 
column, we report the floating-rate model with k = 0.015 and the 
outcome is quite different. The hard cap binds, and this opens the 
door to dilution risk.

Our focus is on the welfare of the government under alternative 
arrangements. To evaluate this, we present the value at zero debt for 
alternative endowments: V(., 0). In figure 2 panel (a), we plot the value 
function for the two one-period models (EG-ST and EG-CK) as well 
as the floating-rate model. The horizontal axis traces out alternative 
initial endowment states.

The EG-ST and FR values are indistinguishable, while the Cole-
Kehoe short-term bond model has a distinctly lower value. The fact 
that rollover risk lowers welfare is intuitive, particularly with short-
maturity bonds. As anticipated by the analytical models, the floating-
rate model preserves the good features of the one-period model while 
eliminating the vulnerability to rollover risk.

In panel (b), we plot the consumption equivalent welfare gain 
between the CK-ST model and the FR model. For low-endowment 
states, welfare increases by slightly more than one percent, while for 
high-endowment states the gain is an order of magnitude less. Recall 
that welfare is evaluated at zero debt, and hence the likelihood of 
default (whether fundamental or self-fulfilling) lies well in the future.

12. This result however depends on the value of k. For example, with a value of 
1.0, there are more noted differences between the two models. Therefore, there is an 
intermediate range of values for k for which the environments align.
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Table 1. Moments of the Ergodic Distribution

FR
k  –0.060 EG-ST CK-ST EG-LT CK-LT

FR
k  –0.015

[b']y 0.82 0.82 0.38 0.94 0.94 0.87

[q b ']y
0.82 0.82 0.38 0.72 0.72 0.78

Default Rate(*) 0.003 0.003 0.002 0.067 0.067 0.033

[r–r*](*) 0.003 0.003 0.002 0.080 0.080 0.038

StDev[r–r*](*) 0.005 0.004 0.003 0.044 0.044 0.029

k 0.011 0.010 0.010 0.010 0.010 0.011

StDev(k) 0.001 0 0 0 0 0.002

Runs/Defaults 0.087 0 1.000 0 0.003 0.003

Source: Authors’ calculations.
Note: This table reports key moments from the ergodic distribution of each model. All moments are conditional 
on being in good credit standing for the prior 20 quarters. The first row is the average level of debt issued as a 
fraction of the endowment. The second row is the average market value of debt issuance, again normalized by the 
level of endowment. The third row is the annualized frequency of default. The fourth and fifth rows are the mean 
and standard deviation of implied spreads, respectively. Spreads are computed in annualized form as (1/q)4 – R4. 
The sixth and seventh rows are the mean, and standard deviation of the coupon, respectively. The final row is the 
fraction of defaults that occur due to a self-fulfilling rollover crisis. 
(*) Annualized.

In panels (c) and (d) of figure 2 we repeat the same exercises for 
the long-term bond models. In panel (c), the EG-LT and CK-LT models 
generate the same value for the government. The reason is that the 
long-term bonds eliminate the vulnerability to rollover risk. However, 
the FR model dominates in welfare. This is because the long-term 
fixed-rate models suffer from dilution risk, something not present with 
a floating-rate coupon. Panel (d) presents the consumption equivalent 
welfare gain between FR and CK-LT(=EG-LT). We see that, at low-
endowment states, the welfare gain is roughly one percent.

Another approach to evaluating the efficiency of alternative debt 
instruments is to trace out the frontier between lenders’ payoffs and 
the government’s value at different levels of debt. Specifically, consider 
a state (y–1, y, b). The government’s value is V(y–1, y, b), where y–1 is an 
irrelevant state in the fixed-rate environments. The lenders’ market 
value at the start of the period is:
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Figure 2. Government Welfare
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(c) Value at zero debt (d) Welfare gain

-24

-23

-22

0.8 0.9 1.0 1.1 1.2 1.3

-21

-20

V
 (y

, b
=0

)

y

1.006

1.007

0.8 0.9 1.0 1.1 1.2 1.3

1.008

1.009

1.010

W
el

fa
re

 G
ai

n

y

Source: Authors’ calculations.
Note: Panel (a) depicts the equilibrium value function at zero debt as a function of current endowment. The solid 
black line represents the floating-rate bond model, the dashed white line represents the short-term EG model, and 
the solid gray line represents the short-term CK model. Note that the black and the dashed white lines are identical. 
Panel (b) represents the consumption-equivalent welfare gain for the government between the floating-rate model 
and the short-term CK model. Panel (c) repeats panel (a) but with the long-term versions of EG and CK. In this 
case, the EG and CK models are identical. Panel (d) repeats panel (b) comparing the floating-rate model with the 
long-term CK model.

The value is zero if the government defaults ( (.) = 1). Otherwise, 
lenders receive the coupon and principal (k + l)b, and the market 
value of non-maturing debt is q(y, b')  b, where b' is the equilibrium 
debt-issuance policy.

Figure 3 traces out the frontier between MV on the vertical axis 
and V on the horizontal axis as we vary b and hold y and y–1 at the 
mean value. Panel (a) contains the short-term fixed-rate models, and 
panel (b) the long-maturity environments, with both panels containing 
the floating-rate case as well.

For each frontier, the point furthest to the left on the horizontal 
axis is the default value for the government. This point represents all  
b such that the government defaults and lenders receive zero. Note that 
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the default value varies across environments due to the probability of 
re-entry. Hence, a lower reentry value lowers the default value.

The remaining points represent positive values for the lenders. 
In panel (a), we see that the one-period EG model (EG-ST) and the 
floating-rate model lie on top of each other for this parameterization. 
The floating-rate frontier depends on the coupon, which in the figure 
depicted is evaluated at the mean endowment (that is, we assume 
y–1 equals the unconditional mean). The CK-ST bond model is clearly 
dominated by both. The CK-ST model is prone to rollover risk, which 
depresses the frontier. However, the low default value (due to the low 
reentry value) of CK-ST enables the government to sustain lower 
repayment values without defaulting, thus extending the frontier to 
the left.

Panel (b) repeats the frontier for the long-term bond model. 
Recall that in this case, the EG-LT model and the CK-LT model are 
equivalent, as maturity is such that there is no rollover risk. However, 
there is the risk of debt dilution. For this reason, the floating-rate 
frontier dominates the other two. Note that the upward portions of 
the frontier for the fixed-rate bonds are on the ‘wrong’ side of the debt 
Laffer curve. That is, debt forgiveness would increase both lender 
and government values. This reflects that legacy bondholders are 
being diluted. Such debt forgiveness is ruled out a priori because it 
cannot be implemented via voluntary market transactions due to the 
holdout problem. Hatchondo and others (2014) provide an analysis of 
negotiated restructurings to alleviate this inefficiency.
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5. ConClusion

In this paper we presented analytical and quantitative arguments 
in favor of long-term bonds with floating-rate coupons. We showed 
that such bonds combine the incentive properties of one-period bonds 
with the protection from the rollover risk of a long-term bond. In the 
presence of rollover and dilution risk, such bonds provide government 
welfare that dominates both short-term and long-term bonds.

As noted in the introduction, while the analysis includes standard 
features in the literature, it omits some real-world complications. 
Perhaps primary among these omissions are the shocks to the global 
required rate of return.

Figure 3. Pareto Frontiers
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Source: Authors’ calculations.
Note: This depicts the frontier between lenders’ value (vertical axis) and government value (horizontal axis) as b 
varies, evaluating y and lagged y at the mean. Panel (a) depicts the one-period bond models as well as the floating-
rate model. Panel (b) compares the long-term bond models with the floating-rate model. In each panel, the black 
line is the floating-rate model, the dashed white line is the EG model, and the solid gray line is the CK model. 
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