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THE THEORY OF OPTIMAL DELEGATION WITH AN APPLICATION
TO TARIFF CAPS

BY MANUEL AMADOR AND KYLE BAGWELL1

We consider a general representation of the delegation problem, with and without
money burning, and provide sufficient and necessary conditions under which an inter-
val allocation is optimal. We also apply our results to the theory of trade agreements
among privately informed governments. For both perfect and monopolistic competi-
tion settings, we provide conditions under which tariff caps are optimal.
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1. INTRODUCTION

IN MANY IMPORTANT SETTINGS, a principal faces an informed but biased agent,
and contingent transfers between the principal and agent are infeasible. The
principal then chooses a permissible set of actions and “delegates” the agent
to select any action from this set. The optimal form of delegation reflects an
interesting tradeoff. The principal may wish to grant flexibility to the agent
in order to utilize the agent’s superior information as to the state of nature;
however, the principal may also seek to restrict the agent’s selection so as to
limit the expression of the agent’s bias.

The “delegation problem” contrasts with most of the mechanism-design
literature, which assumes that contingent transfers are feasible. Contingent
transfers may be infeasible, or at least severely restricted, in several settings
of economic and political interest. For example, in a setting in which a regula-
tor selects permissible prices or outputs for a monopolist with private informa-
tion, legal rules may preclude contingent transfers between a regulator and a
regulated firm.2 Legal rules also limit contingent transfers in a variety of polit-
ical settings. In other settings, contingent transfers may be discouraged due to
social or ethical considerations.

The delegation problem was first defined and analyzed by Holmstrom
(1977). He provided conditions for the existence of an optimal solution to the
delegation problem. He also characterized optimal delegation sets in a series
of examples, under the restriction that the delegation set takes the form of a

1A previous version of this paper was circulated under the title “On the Optimality of Tar-
iff Caps.” We would like to thank Jonathan Eaton, Alex Frankel, Bengt Holmstrom, Petros
Mavroidis, John McLaren, John Morrow, Ilya Segal, Robert Staiger, Bruno Strulovici, Alan
Sykes, Juuso Toikka, Ivan Werning, and Robert Wilson for fruitful comments and suggestions. We
also would like to thank participants at several seminars and conferences. Peter Troyan provided
excellent research assistance. We also thank the editor and three anonymous referees. Manuel
Amador acknowledges NSF support.

2For further discussion, see Alonso and Matouschek (2008) and the references cited therein.
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single interval.3 As Holmstrom (1977) argued, interval delegation is commonly
observed. It is thus of special importance to understand when interval delega-
tion is an optimal solution to the delegation problem.4

In this paper, we consider a general representation of the delegation prob-
lem and provide conditions under which interval delegation is an optimal so-
lution to this problem. We also apply our results to the theory of trade agree-
ments among privately informed governments, and establish conditions under
which an optimal agreement takes the form of a tariff cap.

To develop a general representation of the delegation problem, we posit that
the agent’s action is taken from an interval on the real line and that the state
has a continuous distribution over a bounded interval on the real line. While
most of the delegation literature has focused on quadratic preferences, we con-
sider a more general set of preferences. The principal’s welfare function is con-
tinuous in the action and state and is twice differentiable and concave in the
action. The state enters into the agent’s welfare function in a multiplicative
fashion, as is standard, and the agent’s welfare function is twice differentiable
and strictly concave in the action. We assume that the agent’s preferred action
is interior and strictly increasing in the state. We do not impose any conditions
on the direction of the bias of the agent. We also analyze a modified delega-
tion problem with a two-dimensional delegation set, where an action may be
permitted only when an associated level of money is burned.

The possibility of money burning can be interpreted in many ways; as one
example, our analysis includes situations in which “exceptional” actions are
permitted only if wasteful administrative costs are incurred.5 When money
burning is allowed, we assume that it entails equal losses in the welfares of
the agent and principal. To motivate this assumption, we note that, in some
settings, such as the trade-agreement application that we discuss below, two
players may seek to maximize the expected value of their joint welfare, with
the understanding that one of the players will subsequently observe the state
and choose an action from the permissible set to maximize his welfare. In this
context, the “principal’s” welfare corresponds to the players’ joint welfare, and
the agent’s welfare is the welfare of the player who is subsequently informed

3Holmstrom (1977, p. 44) also established, for a specific example with quadratic preferences,
that a single interval is optimal over all compact delegation sets.

4There is a large literature that followed Holmstrom’s original work. See, for example,
Martimort and Semenov (2006), Melumad and Shibano (1991), and Mylovanov (2008) and, more
recently, Armstrong and Vickers (2010) and Frankel (2010).

5Other interpretations are also available. In a linear-quadratic setup, allowing for money burn-
ing is equivalent to allowing for stochastic allocations. For related work, see Goltsman, Hörner,
Pavlov, and Squintani (2009) and Kovac and Mylovanov (2009). Within the context of a repeated
game with privately observed and i.i.d. shocks, money burning can be interpreted as symmetric
punishments. See Athey, Bagwell, and Sanchirico (2004) and Athey, Atkeson, and Kehoe (2005)
for related themes. In the context of a consumption-savings problem, Amador, Werning, and An-
geletos (2006) interpreted money burning as the possibility of selecting a consumption-savings
bundle that lies in the interior of the consumer’s budget set.
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and chooses an action. A money burning expense incurred by the agent then
also lowers the principal’s welfare.6

To establish our findings, we utilize and extend the Lagrangian methods
developed by Amador, Werning, and Angeletos (2006) in their analysis of a
consumption-savings model. The Lagrangian method that they proposed, how-
ever, is not directly applicable to the general setting that we consider. First,
in the setting without money burning, our constraint set features a contin-
uum of equality constraints. Second, and more generally, our setup allows that
the Lagrangian may fail to be concave with respect to the action.7 The key
to our approach is to construct valid Lagrange multipliers such that the La-
grangian is concave in the action when evaluated at those multipliers. We can
then check first-order conditions for the maximization of the Lagrangian and
thereby identify sufficient conditions for the optimality of interval delegation.
Finally, we use standard Lagrangian techniques as well as simple perturbations
to determine necessary conditions.

Our first proposition establishes sufficient conditions for an optimal solution
to the delegation problem to take the form of interval delegation, where the
sufficient conditions are expressed in terms of the welfare functions and the
distribution of the state of nature. We provide conditions for both the setting
without money burning as well as the setting with money burning. When the
principal’s welfare function is at most as concave as the agent’s, the sufficient
conditions for the two settings coincide. However, when the principal’s welfare
function is more concave than the agent’s, the sufficient conditions for the op-
timality of interval delegation become tighter when money burning is feasible.

In our second proposition, we consider necessary conditions for the opti-
mality of interval delegation. If the principal’s welfare function is at least as
concave as the agent’s, then we use Lagrangian techniques to show, for the
delegation problem with money burning, that our sufficient conditions are also
necessary for the optimality of interval delegation. For other circumstances, we
consider specific perturbations that enable us to identify necessary conditions.
These perturbations are enough to identify a family of welfare functions for
which the sufficient conditions of our first proposition are also necessary for

6Ambrus and Egorov (2009) identified an additional scenario in which money burning gen-
erates equal losses for the principal and agent; namely, if the agent has an ex ante participation
constraint and ex ante (noncontingent) transfers are feasible, then the principal must compensate
the agent for the agent’s expected money burning expenses. As we discuss below, we also consider
an extended model with imperfect transfers, which can be understood as relaxing the equal-loss
assumption.

7In Amador, Werning, and Angeletos (2006), concavity of the Lagrangian obtains directly from
the structure of the problem, and the constraint set does not feature a continuum of equality
constraints. This allowed Amador, Werning, and Angeletos (2006) to obtain both necessary and
sufficient conditions from Lagrangian methods.
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the optimality of interval delegation. As we discuss below, this preference fam-
ily includes, as special cases, the preferences commonly used in the literature.8

Our third proposition considers a special case in which the difference be-
tween the principal’s welfare and the agent’s welfare can be expressed as a
function that depends on the action chosen but not on the state. For this case,
the sufficient conditions for interval delegation take a particularly simple form.
In particular, if the function that captures the welfare difference is decreasing
when evaluated at the agent’s preferred action (i.e., if the agent is biased to
take actions that are higher than the principal would prefer), then the optimal-
ity of interval delegation holds for a broad range of settings if the density is
nondecreasing and the agent’s welfare is never more than twice as concave as
the principal’s welfare.

Using our findings, we also develop a new application of delegation the-
ory to the theory of trade agreements among governments with privately ob-
served political pressures. We consider trade between two countries. For a
given good, the importing government sets a tariff, and governments negoti-
ate a trade agreement to maximize their expected joint welfare. A trade agree-
ment defines a set of permissible import tariffs and associated money burning
levels, where we may think of money burning in this context as any wasteful
bureaucratic procedures that a government must follow in the course of se-
lecting certain tariffs. After the trade agreement is formed and the delegation
set is selected, the importing government privately observes the level of politi-
cal pressure from its import-competing industry and then selects its preferred
tariff from the set of permissible tariffs. We can capture this scenario as a del-
egation problem with money burning, in which the “principal’s” objective is to
maximize expected joint government welfare, the agent’s objective is to max-
imize the welfare of the importing government for any given level of political
pressure, and the state variable is the level of political pressure.

In this general context, we consider two settings in which a role for a trade
agreement arises. The first setting is a standard model with perfect compe-
tition, in which the familiar “terms-of-trade” externality provides the ratio-
nale for a trade agreement between governments. The second setting follows
the “new-trade” theory of intra-industry trade and features monopolistic com-
petition. In the monopolistic competition model that we present, an import
tariff switches expenditures away from foreign varieties and toward domes-
tic varieties, generating a negative international (“profit-shifting”) externality
even though the import tariff does not alter the terms of trade. In both set-
tings, we assume an additively separable utility function and the existence of

8Other papers obtain the optimality of interval (or pooling) allocations in different settings.
For example, see Athey, Atkeson, and Kehoe (2005) in the context of a monetary policy game and
Athey, Bagwell, and Sanchirico (2004), Athey and Bagwell (2008), and McAfee and McMillan
(1992) in the context of collusion. Since we do not consider additional expectational constraints
or allow for multiple agents, our results do not directly apply to these papers.
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an “outside” or numeraire good that is produced in both countries and freely
traded. Both settings have received significant attention in the literature on
trade agreements.9

For both settings, we establish conditions under which an optimal trade
agreement does not employ money burning and takes the form of a tariff cap.
Our findings thus provide an interpretation of a fundamental design feature
of the GATT/WTO trade agreement, whereby governments negotiate “tariff
bindings” or “bound tariff levels” rather than precise tariffs. As the World
Trade Report 2009 (World Trade Organization (2009, p. 105)) states, the “con-
cept of a tariff binding—i.e., committing not to increase a duty beyond an agreed
level—is at the heart of the multilateral trading system.”10 A tariff binding is sim-
ply a tariff cap. Our analysis also provides an interpretation of “binding over-
hang,” whereby a WTO member government applies a tariff that falls below
its negotiated bound level. While the pattern of binding overhang varies across
products and countries, the World Trade Organization (2009, p. xix) notes that
“binding overhangs are a prominent feature of the WTO commitments of most
members.”11 In our model, a government that incurs high political pressure ap-
plies a tariff that equals the cap, but a government applies a tariff below the
cap when its political pressure is sufficiently low. Our analysis thus indicates
conditions under which binding overhang occurs with positive probability in an
optimal trade agreement. Finally, we note that our assumption that contingent
transfers are unavailable can be motivated in the trade agreement setting, since
explicit monetary transfers between governments are not required by WTO
rules and are rarely used in WTO dispute resolutions.

In particular, using our third proposition, we consider both perfect and mo-
nopolistic competition settings, and provide simple conditions under which an
optimal trade agreement takes the form of a tariff cap. For the setting with
perfect competition, we consider further two particular specifications. The first

9For related models with perfect competition, see, for example, Bagwell and Staiger (2005),
Feenstra and Lewis (1991), Grossman and Helpman (1995), Helpman and Krugman (1989,
Chap. 2), and Horn, Maggi, and Staiger (2010). Related models with monopolistic competition
were analyzed by Chang (2005), DeRemer (2012), Flam and Helpman (1987), Helpman and
Krugman (1989, Chap. 7), and Ossa (2012), for example. See Bagwell and Staiger (2012) for dis-
cussion of the rationale for a trade agreement in imperfectly competitive markets when import
and export policies are available.

10In GATT and now the WTO, market access commitments are achieved through tariff bind-
ings. GATT Article II.1(a) states “each contracting party shall accord to the commerce of the other
contracting parties treatment no less favorable than that provided for in the appropriate Part of the ap-
propriate Schedule annexed to this Agreement.” In GATT parlance, a contracting party is a country
and the treatment provided for in the schedule of concessions is the bound tariff.

11Work by Bouet and Laborde (2010) suggests that binding overhang is also quantitatively
significant. Using a CGE model, they concluded that world trade would fall by 9.9% in a scenario
where the applied tariffs of major economies were raised to bound rates. For recent empirical
analyses of the pattern of binding overhang, see Bacchetta and Piermartini (2011) and Beshkar,
Bond, and Rho (2011).



1546 M. AMADOR AND K. BAGWELL

specification is a linear-quadratic model of trade. For a broad range of param-
eter values, we show that a tariff cap is optimal under this specification if the
density function that determines political pressure is nondecreasing and also
under a condition that allows for decreasing densities. The second specifica-
tion is an endowment model with log utility. We establish related conditions
under which a tariff cap is optimal for this specification. We also confirm with
this specification that our approach can handle nonquadratic preferences. This
latter point is confirmed with even greater force in the setting with monopo-
listic competition, where consumer demand exhibits constant elasticity of sub-
stitution across different varieties. We identify here a range of values for the
elasticity of substitution such that the optimality of the tariff cap can again be
easily confirmed if the density is nondecreasing.

An important feature of both settings is that the Lagrangian may be concave
in the action only when evaluated at appropriate multipliers. In addition to
providing new insights about the optimality of tariff caps and the phenomenon
of binding overhang, our trade application thus also serves to illustrate the
enhanced generality that our approach affords.

Finally, we also show how our analysis can be extended to include the possi-
bility of imperfect (“leaky bucket”) contingent transfers. For the trade settings
that we consider, we establish that the optimality of a tariff cap is robust to the
possibility of transfers that are sufficiently inefficient; however, if a transfer in-
strument is available that is sufficiently efficient, governments can improve on
a simple tariff cap.

Our work relates to two main literatures. The first is the literature on optimal
delegation. We establish that important characterizations of optimal delega-
tion in previous work can be captured as special cases of our findings. In partic-
ular, Alonso and Matouschek (2008) analyzed the optimal delegation problem
when money burning is not allowed. They considered a setting with quadratic
welfare functions and provided necessary and sufficient conditions for interval
delegation to be optimal.12 Their welfare functions are included in the family
of welfare functions for which we provide necessary and sufficient conditions
for the optimality of interval delegation. Likewise, we show that the minimum
savings result of Amador, Werning, and Angeletos (2006) can be captured as
a special case of our first proposition when money burning is allowed. Finally,
our sufficient conditions for interval delegation when money burning is permit-
ted include the sufficient conditions identified by Ambrus and Egorov (2009)
for the special case of quadratic welfare functions and a uniform distribution
for the state of nature.

The second literature addresses the economic theory of trade agreements.13

An extensive set of research considers the purpose and design of the WTO,

12Alonso and Matouschek (2008) also characterized the value of delegation, provided associ-
ated comparative statics results, and obtained a characterization when interval delegation is not
optimal.

13See Bagwell and Staiger (2010) for a recent survey of this literature.
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but the trade-agreement literature has only recently addressed the economics
of tariff caps (i.e., bindings) and the associated possibility of binding overhang.
In the emerging theory literature that considers tariff bindings and binding
overhang, our paper relates most closely to Bagwell and Staiger (2005). Rela-
tive to this paper, our paper contributes in three main respects. First, Bagwell
and Staiger (2005) characterized the optimal tariff cap; however, they did not
establish conditions under which an optimal trade agreement takes the form
of a tariff cap. Second, Bagwell and Staiger (2005) analyzed a linear-quadratic
model with perfect competition, whereas we consider this model as a special
case in the setting with perfect competition and consider, as well, a setting
with monopolistic competition.14 Third, we consider a multidimensional policy
space, in which a trade agreement can specify tariffs as well as money burning
(i.e., wasteful bureaucratic procedures).15

The paper is organized as follows. The basic model is presented in Section 2.
In Section 3, we present sufficient and also necessary conditions for interval
delegation to solve the delegation problem without and with money burning,
respectively. Our tariff-cap application is found in Section 4. In Section 5,
we discuss in more detail the relationship between our findings and those of
Alonso and Matouschek (2008), Amador, Werning, and Angeletos (2006), and
Ambrus and Egorov (2009). Section 6 concludes. The Appendix contains sev-
eral proofs. Additional details and proofs are found in the Supplemental Ma-
terial (Amador and Bagwell (2013)).

2. BASIC SETUP

We consider a setting with a principal and an agent. The principal has a
welfare function given by w(γ�π) − t, while the agent has a welfare function
given by γπ + b(π)− t. The value of π represents an action or allocation, and
the value of γ represents a state or shock that is private information to the
agent. The value of t represents an action that reduces everyone’s utility. We
thus generalize the standard delegation problem to include the possibility of
money burning.

14See also Bagwell (2009), who considered the linear-quadratic model when political pressures
can take only two types. He found that optimal delegation then does not take the form of a tariff
cap. Our work also provides a foundation for recent work by Amador and Bagwell (2012) and
Beshkar, Bond, and Rho (2011), as we discuss further in Section 4.1.2.

15Tariff bindings and binding overhang have also received attention in other modeling frame-
works. In a model with contracting costs, Horn, Maggi, and Staiger (2010) established that bind-
ing overhang can occur. Maggi and Rodríguez-Clare (2007) analyzed a model in which applied
tariffs are set at bound levels in equilibrium, and yet the potential to apply a tariff below the
bound level induces ex post lobbying that mitigates an ex ante problem of over-investment. Our
work is also related to work by Feenstra and Lewis (1991). A key difference is that Feenstra and
Lewis (1991) allowed for monetary transfers between governments, whereas we do not allow for
(perfect) contingent transfers.
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We assume that γ has a continuous distribution F with bounded support
Γ = [γ�γ] and with an associated continuous and strictly positive density f .
The action π is chosen from a set Π which is an interval of the real line with
nonempty interior. We assume, without loss of generality, that infΠ = 0, and
define π to be in the extended reals and such that π = supΠ. For the remain-
der of the paper, we impose the following conditions on the primitives:

ASSUMPTION 1: The following hold: (i) the function w :Γ × Π → R is con-
tinuous on Γ × Π; (ii) for any γ0 ∈ Γ , the function w(γ0� ·) is concave on Π,
and twice differentiable on (0�π); (iii) the function b :Π → R is strictly con-
cave on Π, and twice differentiable on (0�π); (iv) there exists a twice differ-
entiable function πf :Γ → (0�π) such that, for all γ0 ∈ Γ , π ′

f (γ0) > 0 and
πf(γ0) ∈ arg maxπ∈Π{γ0π + b(π)}; and (v) the function wπ :Γ × (0�π) → R

is continuous on Γ × (0�π), where wπ denotes the derivative of w in its second
argument.

Note that the function πf indicates the agent’s preferred, or flexible, action for
any γ.

An allocation is a pair of functions (π� t), with π :Γ → Π and t :Γ → R,
that represents the action and the amount of money burned as a function of
the private information. The goal is simply to choose an allocation (π� t) so as
to maximize the principal’s welfare function:

max
∫
Γ

(
w

(
γ�π(γ)

) − t(γ)
)
dF(γ) subject to:(P)

γ ∈ arg max
γ̃∈Γ

{
γπ(γ̃)+ b

(
π(γ̃)

) − t(γ̃)
}
� for all γ ∈ Γ�

t(γ)≥ 0; ∀γ ∈ Γ�

where the first constraint is an incentive-compatibility constraint that arises
since the agent is privately informed of the value of γ.16

We will also consider the problem where money burning is ruled out by as-
sumption, that is, where we impose on the above problem the additional con-
straint

t(γ)= 0� ∀γ ∈ Γ�(1)

Whether or not money burning is allowed, an important feature of the dele-
gation problem defined above is that contingent transfers between the princi-
pal and agent are not allowed. This feature has significant implications for the
set of incentive-compatible allocations. In the problem without money burning,
for example, an incentive-compatible allocation can be strictly increasing and

16All integrals used in the paper are Lebesgue integrals.
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continuous over an interval of values for γ only if the allocation over that inter-
val is given by the agent’s flexible allocation function, πf . Incentive-compatible
allocations may also exhibit jump discontinuities from a lower step to a higher
step, where a step is a segment over which agent types are pooled (i.e., the
allocation is independent of γ along a step).17 To characterize an optimal al-
location in this setting, we adopt a “guess-and-verify” approach, in which our
guess is the optimal interval allocation and our verification process uses La-
grangian methods as described below.

3. OPTIMALITY OF INTERVAL DELEGATION

In this section, we define and characterize interval allocations. We then pro-
vide sufficient and necessary conditions for a solution to the problems stated in
the previous section to be an interval allocation. We conclude the section with
a discussion of the method of proof for our sufficiency and necessity proposi-
tions.

3.1. Interval Allocation

We begin with a definition of an interval allocation.

DEFINITION 1: An allocation (π� t) is an interval allocation with bounds a�b
if a�b ∈ Γ ; a < b; t(γ)= 0 for all γ ∈ Γ ; and

π(γ)=
⎧⎨⎩
πf(a); γ ∈ [γ�a]�
πf (γ); γ ∈ (a�b)�
πf (b); γ ∈ [b�γ].

Thus, when the principal utilizes an interval allocation, an agent that ob-
serves an intermediate value for γ can exercise flexibility and select the agent’s
preferred choice, πf(γ). An agent that observes a sufficiently high (low) value
for γ then selects the highest (lowest) permissible action. An interval allocation
satisfies the constraints of the problems stated in the previous section, since it
is incentive compatible and burns no money. Note that an interval allocation
takes the form of a cap if a= γ�

We next characterize the interval allocation that is optimal within the class
of interval allocations.

LEMMA 1—Optimal Interval: The interval allocation with bounds γL�γH is
optimal within the class of interval allocations only if the following conditions
hold:

17See Melumad and Shibano (1991) for a characterization of incentive-compatible allocations
under quadratic preferences when money burning is not allowed.
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(i) if γH = γ, then wπ(γ�πf (γ))≥ 0;
(ii) if γH < γ, then

∫ γ

γH
wπ(γ�πf (γH))f (γ)dγ = 0;

(iii) if γL = γ, then wπ(γ�πf (γ))≤ 0;
(iv) if γL > γ, then

∫ γL
γ

wπ(γ�πf (γL))f (γ)dγ = 0.

The proof appears in the Appendix.
To understand this lemma, observe that wπ(γ�πf (γ)) indicates the direction

of the bias of the agent with type γ. For example, when wπ(γ�πf (γ)) > 0 for
some γ, the principal would prefer a higher action than the one most preferred
by the agent. Conditions (i) and (iii) imply that if agent types are not pooled at
the extremes, it must be because the principal prefers an even more extreme
action. Conditions (ii) and (iv) show that if agents are pooled at the extremes,
then the interior boundary of any such pooling region must be such that the
average bias among the pooled agents is zero (i.e., the action is efficient on
average).

3.2. Results

We proceed next to determine conditions under which an interval allocation
solves Problem (P), with and without the additional restriction (1). As we dis-
cuss in further detail below, the relative concavity of the principal’s and agent’s
welfare functions is a key consideration in determining the optimality of an in-
terval allocation. In particular, the following constant κ is helpful when stating
the conditions for the optimality of an interval allocation.

DEFINITION 2: For the problem without money burning, that is, Problem (P)
with the additional restriction (1), define κ to be

κ= inf
(γ�π)∈Γ×Π

{
wππ(γ�π)

b′′(π)

}
�(2)

For the problem with money burning, that is, Problem (P), define κ to be

κ= min
{

inf
(γ�π)∈Γ×Π

{
wππ(γ�π)

b′′(π)

}
�1

}
�(3)

For a given interval allocation with bounds γL, γH , consider the following
conditions:

(c1) κF(γ)−wπ(γ�πf (γ))f (γ) is nondecreasing for all γ ∈ [γL�γH].
(c2) If γH < γ,

(γ − γH)κ≥
∫ γ

γ

wπ

(
γ̃�πf (γH)

) f (γ̃)

1 − F(γ)
dγ̃� ∀γ ∈ [γH�γ]

with equality at γH .
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(c2′) If γH = γ, wπ(γ�πf (γ))≥ 0.
(c3) If γL > γ,

(γ − γL)κ≤
∫ γ

γ

wπ

(
γ̃�πf (γL)

) f (γ̃)
F(γ)

dγ̃� ∀γ ∈ [γ�γL]

with equality at γL.
(c3′) If γL = γ, wπ(γ�πf (γ))≤ 0.

Note that conditions (c2′) and (c3′) correspond to conditions (i) and (iii),
respectively, in Lemma 1; likewise, the equality requirements in conditions (c2)
and (c3) correspond to conditions (ii) and (iv) in Lemma 1.

The next proposition shows that conditions (c1), (c2), (c2′), (c3), and (c3′)
are sufficient for the optimality of an interval allocation (with and without
money burning).

PROPOSITION 1—Sufficiency: Consider γL�γH ∈ Γ with γL < γH .
(a) (No money burning) If conditions (c1), (c2), (c2′), (c3), and (c3′) are

satisfied with κ given by equation (2), then the interval allocation with bounds
γL�γH solves the problem without money burning, that is, Problem (P) with the
additional constraint (1).

(b) (Money burning) If conditions (c1), (c2), (c2′), (c3), and (c3′) are satisfied
with κ given by equation (3), then the interval allocation with bounds γL�γH solves
Problem (P).

The proof appears in the Appendix.
Proposition 1 requires knowledge of the value of κ to be able to determine

whether conditions (c1)–(c3′) hold. In some settings, however, it may be easier
to determine bounds for κ. By inspection, conditions (c1)–(c3′) hold if they
hold when κ is replaced by a lower value. Thus, the results of Proposition 1
remain the same if κ is replaced by a lower bound.

The next proposition characterizes situations where the conditions are also
necessary.

PROPOSITION 2—Necessity: Consider γL�γH ∈ Γ with γL < γH .
(a) (No money burning) If w(γ�π) = A[b(π) + B(γ) + C(γ)π] and f is

differentiable, then conditions (c1), (c2), (c2′), (c3), and (c3′) with κ as given
by equation (2) are necessary for the interval allocation with bounds γL�γH to
solve the problem without money burning, that is, Problem (P) with the additional
constraint (1).

(b) (Money burning) Let κ be given by equation (3). If either (i) κ = 1, or
(ii) w(γ�π) = A[b(π) + B(γ) + C(γ)π] and f is differentiable, then condi-
tions (c1), (c2), (c2′), (c3), and (c3′) are necessary for the interval allocation with
bounds γL�γH to solve Problem (P).
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The proof appears in the Appendix.
The following proposition specializes Proposition 1 to an important case

in which the bias in the agent’s preferences (i.e., the difference between the
agent’s utility and the principal’s) is not directly affected by the agent’s private
information and always leads the principal to prefer an action that is lower
than the action that the agent would select under flexibility (i.e., for given γ,
the principal’s preferred choice is below πf(γ)).

PROPOSITION 3: Assume that (i) w(γ�π)= v(π)+b(π)+γπ for some func-
tion v :Π → R; (ii) κ ≥ 1/2 with κ defined as in equation (2) (or alternatively, as
in equation (3)); and (iii) there exists γH ∈ (γ�γ) such that

v′(πf(γH)
) + E[γ|γ ≥ γH] − γH = 0�(4)

and v′(πf (γ)) ≤ 0 for all γ ∈ [γ�γH]. Then, for f nondecreasing, the interval
allocation with bounds γ�γH solves Problem (P) with the additional constraint (1)
(or alternatively, solves Problem (P)).

The proof appears in the Appendix.
Proposition 3 states that, to check whether an interval allocation in the form

of a cap with γH ∈ (γ�γ) is optimal when w(γ�π) = v(π) + b(π) + γπ, it
suffices to check that κ ≥ 1/2 and that the density is nondecreasing. Note that
this monotonicity restriction on the density can be weakened if we have more
knowledge of the payoff functions b and w.18 Note also that if v′(πf (γ)) < 0
for all γ ∈ Γ , then v′(πf (γ)) + E[γ] − γ > 0 is sufficient for condition (iii) of
the proposition.19

In Section 4, we show that Proposition 3 can be used to characterize the
optimal trade agreement in standard trade models with perfect competition
and monopolistic competition, respectively.

3.3. A Discussion of the Results

3.3.1. The Sufficiency Proposition

In what follows, we briefly describe the method of proof used for Proposi-
tion 1.

Consider first part (a) of Proposition 1, the problem without money burning.
By writing the incentive constraints in their usual integral form plus a mono-
tonicity restriction, we can rewrite Problem (P) with the additional constraint

18We illustrate this point in our trade-agreement application. See the discussion following
Corollary 2.

19It is also possible to write a version of Proposition 3 that refers to the optimality of a floor
allocation (rather than a cap) for the case where v′(πf (γ)) ≥ 0 for all γ ∈ [γL�γ]. In that case,
the sufficient condition is f nonincreasing.
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(1) as

max
∫

w
(
γ�π(γ)

)
dF(γ) subject to:(5)

γπ(γ)+ b
(
π(γ)

) =
∫ γ

γ

π(γ̃)dγ̃ +U� for all γ ∈ Γ�(6)

π nondecreasing,(7)

where U ≡ γπ(γ)+ b(π(γ)), and where we use that t(γ)= 0 for all γ.20

To prove part (a) of Proposition 1, we follow and extend the Lagrangian
approach used by Amador, Werning, and Angeletos (2006). Differently from
that paper, here we have to deal with a (possible) failure of concavity of the
Lagrangian (which we discuss below), together with a continuum of equality
constraints as captured in (6). We embed the monotonicity constraint (7) into
the choice set of π, and we write constraints (6) as two inequalities:∫ γ

γ

π(γ̃)dγ̃ +U − γπ(γ)− b
(
π(γ)

) ≤ 0 for all γ ∈ Γ�(8)

−
∫ γ

γ

π(γ̃)dγ̃ −U + γπ(γ)+ b
(
π(γ)

) ≤ 0 for all γ ∈ Γ�(9)

The problem is then to choose a function π ∈ Φ so as to maximize (5) sub-
ject to (8) and (9) and where the choice set is given by Φ ≡ {π|π :Γ →
Π and π nondecreasing}.

For the rest of the proof, we use Theorem 1 in Appendix B, which relies
on a Lagrangian method. Basically, given an interval allocation, we construct
Lagrange multiplier functions associated with constraints (8) and (9) that sat-
isfy complementary slackness and are such that the proposed interval alloca-
tion maximizes the resulting Lagrangian over the choice set Φ. As usual, to
check whether an allocation maximizes the Lagrangian, first-order conditions
are particularly useful. Building on Amador, Werning, and Angeletos (2006),
we are able to express the first-order conditions for maximizing the Lagrangian
over the set of nondecreasing functions, Φ� A novel feature of our problem,
however, is that the Lagrangian is not necessarily concave in π. The first-order
conditions are thus not, in general, sufficient for optimality. The key is to note

20In contrast to the standard principal-agent problem with a privately informed agent, a dis-
tinctive feature of our Problem (P) with the additional constraint (1) is that we do not allow for
contingent transfers from the agent to the principal (or vice versa). The standard approach is
to substitute constraint (6) into the objective (5), maximize the resulting expression, and check
whether the solution is monotonic. This approach is infeasible here, since we do not have avail-
able a transfer function with which to ensure that the resulting solution satisfies the incentive-
compatibility constraint (6).
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that Theorem 1 requires that the optimal allocation maximizes the Lagrangian
at some specific (and valid) Lagrangian multipliers. Hence, our objective is to
explicitly construct Lagrange multipliers such that the resulting Lagrangian is
concave in π and the first-order conditions are satisfied at the proposed in-
terval allocation. We show in the Appendix that this objective can be achieved
under the conditions stated in part (a) of Proposition 1.

Consider now part (b) of Proposition 1, the problem with money burn-
ing. Using the integral form for the incentive constraints, Problem (P) can be
rewritten as

max
∫ (

w
(
γ�π(γ)

) − t(γ)
)
dF(γ) subject to:

γπ(γ)+ b
(
π(γ)

) − t(γ)=
∫ γ

γ

π(γ̃)dγ̃ +U� for all γ ∈ Γ�

π nondecreasing, and t(γ)≥ 0, for all γ ∈ Γ�

where U ≡ γπ(γ)+ b(π(γ))− t(γ).
Solving the integral equation for t(γ) and substituting into both the objective

and the nonnegativity constraint, we obtain the following equivalent problem:

max
∫ (

v
(
γ�π(γ)

)
f (γ)+ (

1 − F(γ)
)
π(γ)

)
dγ +U subject to:(10)

γπ(γ)+ b
(
π(γ)

) −
∫ γ

γ

π(γ̃)dγ̃ −U ≥ 0; for all γ ∈ Γ�(11)

π nondecreasing,(12)

where v is defined such that v(γ�π(γ))≡w(γ�π(γ))− b(π(γ))− γπ(γ).21

In comparison to the problem analyzed in part (a), this problem has two
novel features. First, the objective function in (10) is not necessarily concave
in π, as we have not imposed any assumptions on the function v. The second
difference is that constraint (11) entails only one inequality constraint, whereas
constraints (8) and (9) together capture two inequality constraints. Neverthe-
less, the sufficiency proof proceeds in a similar fashion to the one in part (a).
We embed the monotonicity restriction, constraint (12), into the choice set of
the problem. Then we guess a Lagrange multiplier for constraint (11) and form
a Lagrangian. Using the conditions of part (b) of Proposition 1, we then show
that our constructed Lagrange multiplier is valid, the resulting Lagrangian is
concave in π, and the proposed interval allocation satisfies the first-order con-
ditions for maximizing the Lagrangian over the set of nondecreasing functions.

21Note that once we have solved this program for π(γ) and t(γ), we can recover t(γ) via the
integral equation above.
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Appealing once more to Theorem 1 in Appendix B, we then conclude that the
interval allocation is an optimal solution to the problem of maximizing (10)
subject to (11) and (12).

3.3.2. The Necessity Proposition

We describe next the method of proof used in establishing Proposition 2.
When v is concave in π, the problem of maximizing (10) subject to (11)

and (12) as stated above is a maximization problem with a concave objective
function and a convex constraint set. We can then use standard Lagrangian
techniques to characterize necessary conditions for a maximum and thereby
strengthen our results to show that the sufficient conditions in this case are
also necessary. This implies part (b) of Proposition 2 for κ = 1.

For the case without money burning, or when κ < 1 in the case with money
burning, we cannot appeal to Lagrangian techniques to show that sufficient
conditions are also necessary. In the latter case, the problem is that the ob-
jective function of (10) is not concave. In the former case, the difficulty is that
(6) represents a continuum of equality constraints, which violates an interiority
requirement.

To establish the necessity proposition for these cases, we use two sets of nec-
essary conditions that arise from simple perturbations. The first set is asso-
ciated with the interval (γL�γH) over which the allocation exhibits flexibility,
while the second set applies to the intervals [γ�γL] and [γH�γ] over which
the allocation entails pooling. Using these necessary conditions, we are able
to identify a family of preferences for which conditions (c1), (c2), (c2′), (c3),
and (c3′) are also necessary for the optimality of an interval allocation. As we
confirm in Section 5, this class of preferences includes the standard quadratic
preferences used in the delegation literature and the preferences studied by
Amador, Werning, and Angeletos (2006).

The first perturbation is to remove a vanishing interval of choices within the
flexibility region and check that the resulting change in welfare is nonpositive.
Proceeding in this way, and imposing that f is differentiable, we show that an
interval allocation is optimal only if(

wππ(γ�πf (γ))

b′′(πf (γ))

)
f (γ)− d

dγ

[
wπ

(
γ�πf (γ)

)
f (γ)

] ≥ 0�(13)

for all γ ∈ [γL�γH].
We can illustrate this condition by considering the case in which the agent’s

bias is strictly positive in that wπ(γ�πf (γ)) < 0. Over the region of flexibility,
if we undertake a small perturbation in which the flexible actions are removed
for types γ to γ + ε > γ, then there would be an indifferent type γ(ε) such
that types between γ and γ(ε) select πf(γ) and types between γ(ε) and γ + ε
select πf(γ + ε). First, notice that this perturbation induces types between γ
and γ(ε) to make a less-biased choice, while types between γ(ε) and γ + ε
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make a more-biased choice. As suggested by the second term in the left hand
side of inequality (13), the perturbation is less likely to offer an improvement
if the density and/or the bias is greater for higher types. Second, notice that
the perturbation increases the variance of the allocation relative to the flexible
allocation. Since π ′

f (γ)= −1/b′′(πf (γ)), this variance effect is captured by the
first term in the left hand side of inequality (13). As suggested by this term, the
perturbation is less likely to offer an improvement when the concavity of the
principal’s welfare relative to the concavity of the agent’s welfare is greater.

Now note that we can write (13) as(
wππ(γ�πf (γ))

b′′(πf (γ))
− κ

)
f (γ)+ d

dγ

[
κF(γ)−wπ

(
γ�πf (γ)

)
f (γ)

] ≥ 0�(14)

where we know that

κ≤ inf
(γ�π)∈Γ×Π

{
wππ(γ�π)

b′′(π)

}
�

It follows that the first term of (14) is nonnegative, and thus the necessary con-
dition is weaker than condition (c1), as expected. For a family of preferences
with the property that wππ(γ�π)

b′′(π) is constant for all γ and π, however, the neces-
sary condition (14) coincides with condition (c1) when money burning is not
allowed or when κ < 1. The necessity proposition identifies a family of prefer-
ences for which this property holds.

The second perturbation is to take a pooling region (above γH or below γL)
and offer a new choice of π that is attractive to some types lying within this
region. The necessary conditions are obtained by checking that such a pertur-
bation does not increase the principal’s welfare. Arguing in this way, and for
the family of preferences specified in the necessity proposition, we can estab-
lish that conditions (c2), (c2′), (c3), and (c3′) are also necessary.

4. APPLICATION TO TRADE POLICY

We now apply our findings and characterize an optimal trade agreement
between governments with private political pressures. We assume that a trade
agreement identifies a menu of permissible tariffs and is negotiated before
private political pressures are realized. After a government learns its private
information, it then applies its preferred tariff from the permissible set. An
optimal trade agreement maximizes ex ante joint government welfare subject
to incentive-compatibility constraints.

We consider two general settings in which a role for a trade agreement arises.
The first setting is a standard two-country model with perfect competition. In
this model, a trade agreement can generate mutual gains for governments, due
to the familiar “terms-of-trade” externality. Following the “new-trade” theory
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of intra-industry trade, the second model captures a two-country setting with
monopolistic competition. Building on Helpman and Krugman (1989), we con-
sider a setting in which an import tariff switches expenditures toward domestic
varieties, generating a negative international externality even though the im-
port tariff does not alter the terms of trade. As noted in the Introduction, both
settings have received significant attention in the literature on trade agree-
ments. We consider both models and show that our propositions above can be
successfully used to provide general conditions under which an optimal trade
agreement takes the form of a tariff cap.

In particular, we show below that, in both settings, the problem of designing
an optimal trade agreement can be represented as a special case of the general
delegation problem discussed in Section 2, where w(γ�π) = v(π) + b(π) +
γπ and v′(π) < 0 for all π ∈ [0�π). In other words, whether competition is
perfect or monopolistic, we show that the trade model can be represented as
a delegation problem in which the agent’s choice of an action π generates a
negative externality through a function v that is independent of the agent’s
private information. Proposition 3 can then be immediately used to provide a
simple sufficient condition for the optimality of tariff caps.

In this way, for both perfect and monopolistic competition settings, we pro-
vide an interpretation for the central role of tariff caps in GATT/WTO rules
and negotiations. Our findings also provide an interpretation for the phe-
nomenon of binding overhang, since they indicate for both settings that applied
tariffs are strictly below bound tariffs with positive probability in an optimal
trade agreement. We conclude the section by showing that our main findings
continue to hold when the model is extended to allow for imperfect (“leaky
bucket”) contingent transfers, provided that such transfers are sufficiently in-
efficient.

4.1. Optimal Agreement Under Perfect Competition

We first study the optimality of tariff caps in a two-country model with per-
fect competition. After presenting results for a general representation of this
trade model, we develop further findings by focusing on two particular spec-
ifications: the linear-quadratic model analyzed by Bagwell and Staiger (2005)
and an endowment model with log utility.

4.1.1. Mapping Into Our Modeling Framework

In our Supplemental Material (Amador and Bagwell (2013)), we describe
the trade model in more detail. In what follows, we present the basic setup and
results that allow us to write the trade agreement problem as a delegation prob-
lem. There are two countries, home and foreign, and two goods, x and n, where
n is a numeraire. The home country imports good x, and we look for the op-
timal trade agreement for this good. We assume that consumers in both coun-



1558 M. AMADOR AND K. BAGWELL

tries have a symmetric utility function that is quasi-linear in the numeraire:
u(cx)+ cn, where cx and cn represent the amounts consumed of goods x and n,
respectively. We assume that u is strictly increasing, strictly concave, and thrice
continuously differentiable. Letting p denote the home relative price of x to
n� with p∗ representing the relative price in the foreign country, we assume
that there are competitive supply functions of good x in both countries, which
we represent as Q(p) and Q∗(p∗), respectively. For prices that induce strictly
positive supply, we assume that these functions are strictly increasing and twice
continuously differentiable. We also assume that Q(p) <Q∗(p) for any p such
that there is strictly positive world supply.22

As is standard, we assume that the numeraire is produced in each country
under constant returns to scale using labor (the only factor), where the supply
of labor is inelastic. The wage and the price of the numeraire may then be set
at unity. The numeraire is freely traded across countries so as to ensure that
trade is balanced.

We abstract from export policies and assume that the home country may use
a specific (i.e., per unit) import tariff, τ, for good x. As we describe in further
detail in our Supplemental Material, the market-clearing prices in the home
and foreign countries are then determined as functions of τ by the require-
ments that the home country import volume for good x equals the foreign
country export volume for this good and that p = p∗ + τ�

We may now represent the welfare functions of both governments. Let π ∈
[0�π] denote the producer surplus (profit) at home for good x that is induced
by a given tariff, where π is the producer surplus that is obtained when trade
is prohibited. We can write the home government’s welfare as

γπ + b(π)�

where b is the sum of consumer surplus and tariff revenue in the home coun-
try. The shock γ ∈ Γ represents a political economy shock that determines
the weight that the home government puts on the welfare of its (import-
competing) producers. The welfare of the foreign government, v(π), is de-
termined as the sum of consumer surplus and producer surplus in the foreign
country.23

When trade volume is positive, a higher import tariff raises p and lowers p∗,
where the latter effect is the traditional terms-of-trade externality. A higher
import tariff is then associated with a higher level of profit in the home country
and a lower level of foreign welfare. We assume henceforth that trade volume

22In our Supplemental Material, we consider a slightly more general and symmetric trade
model with three goods. The foreign country then imports a good y from the home country,
where the supply assumptions on good y are the mirror image of those stated here for good x.
Separability in the utility function, plus quasi-linearity, allows us to study the two good problem
independently, as we do here.

23See our Supplemental Material for additional details.
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is positive at tariffs that deliver π ∈ [0�π), from which it follows that v′(π) <
0 for all π ∈ [0�π). We assume that b′′(π) < 0; however, as we show in our
Supplemental Material, if Q′′ ≤ 0, Q′′

∗ ≤ 0 and u′′′ ≥ 0, then v′′(π) > 0 for π ∈
[0�π). We are thus careful below not to exclude the possibility of a strictly
convex foreign welfare function.

The home and foreign governments negotiate a trade agreement before the
political economy parameter, γ� is realized. Thus, at the time of negotiation,
the home government is uncertain about its future preferences. We assume
that γ is distributed over the support Γ ≡ [γ�γ] according to a strictly positive
density f (γ). We represent the c.d.f. as F(γ). Once the value of γ is realized,
the home government is privately informed of this value.24

We may imagine that a trade agreement allows a higher import tariff only if
certain wasteful bureaucratic procedures are followed by the importing coun-
try. In addition, given that there is a one-to-one relationship between profit
and tariff levels, we can, without loss of generality, represent the trade agree-
ment as choosing an allocation over the levels of profit in the home country,
π, rather than on tariff levels directly. Hence, we model a trade agreement as
a pair, (π(γ)� t(γ))� that determines, for each γ, the profit allocated to the do-
mestic producers and the level of wasteful activities or money burning. We look
for a trade agreement that is incentive compatible and maximizes expected
joint government welfare. The optimal trade agreement solves the following
problem:

max
π(γ)�t(γ)

{∫
γ∈Γ

(
γπ(γ)+ b

(
π(γ)

) + v
(
π(γ)

) − t(γ)
)
dF(γ)

}
(PT)

subject to: γ ∈ arg max
γ̃∈Γ

{
γπ(γ̃)+ b

(
π(γ̃)

) − t(γ̃)
}
�

Once the optimal profit function is determined, we can easily back out the
associated tariff function.25

24In the three-good model that we describe in our Supplemental Material, the negotiation also
concerns the foreign import tariff and precedes the realization of the foreign political economy
parameter, γ∗� that defines the weight that the foreign government attaches to the profit of its
import-competing producers (of good y). When the value of γ∗ is realized, the foreign govern-
ment is privately informed of its value. We assume that γ∗ and γ are independent and identically
distributed.

25The statement of the problem reflects our assumptions that governments do not have avail-
able contingent side-payments (monetary transfers) and that they seek a trade agreement that
maximizes the sum of their expected welfares. The solution generates a particular outcome on
the efficiency frontier when side-payments are not allowed. In the three-good model described in
our Supplemental Material, an analogous solution applies for good y , where the foreign govern-
ment has private information about the weight that it attaches to its import-competing industry.
If the instrument space is expanded so that governments can make noncontingent side-payments
during their negotiation, and thus before they obtain private information, then all efficient pay-
offs can be achieved by solving program (PT) and specifying an appropriate ex ante transfer.
Grossman and Helpman (1995) made a similar point in their analysis of “trade talks.”
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Note that Problem (PT) maps into our general framework (and, in particu-
lar, the case considered in Proposition 3) by letting w(γ�π) = γπ + b(π) +
v(π). Assumption 1 then requires that b′′(π) < 0, v′′(π) + b′′(π) ≤ 0, and
πf(γ) < π.

Our next step is to determine sufficient conditions for the optimal tariff-
cap allocation to represent an optimal trade agreement. Intuitively, the home
government does not take into account the effect of its actions on foreign
welfare. This leads to an upward bias in the home government tariff de-
cisions, and hence the agreement should not pool the types at the bottom
of the distribution, as these types are already choosing tariffs that are too
high (i.e., γL = γ). Instead, we expect now that γH < γ, which follows from
v′(πf (γ)) < 0.

Let the proposed allocation be (π�� t�(γ)≡ 0), where

π�(γ)=
{
πf(γ)� for γ < γH ,
πf(γH)� for γ ≥ γH ,(15)

and where γH is as in (4).
In the present setting, the value κ takes the form

κ≡ min
{

min
π∈[0�π]

{
v′′(π)+ b′′(π)

b′′(π)

}
�1

}
�(16)

Note that, under Assumption 1, if we were to assume that v is a (weakly) con-
cave function of π� then κ = 1 would follow. Recall, however, that under rea-
sonable circumstances, v may be strictly convex. As discussed in Section 3.3.1,
this highlights one of the novel contributions of the methods developed in the
paper: the ability to handle a nonconcave v. Notice also that κ falls as the con-
vexity of v increases relative to the concavity of b, and that a smaller value of κ
makes conditions (c1)–(c3′) harder to satisfy.

When Assumption 1 holds, we can now apply Proposition 3 to show that, if
κ ≥ 1/2, the density is nondecreasing, and γH ∈ (γ�γ) solves (4), then a tariff
cap is an optimal trade agreement; that is, the proposed allocation (π�� t�)
then solves Problem (PT). We summarize the above discussion in the following
corollary, stated without proof.

COROLLARY 1: In the perfect competition trade model, suppose that (i) As-
sumption 1 holds for w(γ�π) = γπ + b(π) + v(π); (ii) κ ≥ 1/2 with κ defined
as in (16); and (iii) γH ∈ (γ�γ) solves (4). Then, the tariff-cap allocation defined
in (15) is optimal for any nondecreasing density f .

4.1.2. Two Particular Specifications

To further explore the optimality of tariff caps, we now consider two par-
ticular specifications for the trade model. The first specification is the linear-
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quadratic model of trade that Bagwell and Staiger (2005) utilized. We show
that tariff caps are optimal for this model when the density function is non-
decreasing, and we also utilize the structure of the model to establish the
optimality of tariff caps under a condition that allows for decreasing densi-
ties. The second specification considers an endowment model with log util-
ity. We show that our findings apply here as well, and confirm thereby that
our analysis may be usefully applied to specific settings without quadratic
payoffs.

Linear-Quadratic Example. Following Bagwell and Staiger (2005), we now
assume u(c) = c − c2/2, Q(p) = p/2, and Q∗(p∗) = p∗. The flexible or Nash
tariff, τf (γ), is the tariff that maximizes domestic government welfare, given
the realized value of the political economy parameter, γ. For a given value of
γ, the fully efficient (i.e., first best) tariff, τe(γ), is the tariff that maximizes
the sum of home and foreign government welfare. For γ ∈ [1�7/4), the flexible
and efficient tariff functions satisfy τf (γ) > τe(γ).26 Thus, for political econ-
omy parameters in this range, the flexible tariff is higher than efficient. Intu-
itively, when contemplating a higher tariff, the domestic government does not
internalize the negative terms-of-trade externality that is experienced by the
foreign government. When γ = 7/4, the domestic political economy parameter
is so high that the efficient tariff eliminates all trade. The flexible and efficient
tariffs then agree: τf (7/4) = 1/6 = τe(7/4), where 1/6 is the prohibitive tariff
that eliminates all trade.

We provide here conditions for the linear-quadratic model under which the
optimal trade agreement is given by an optimal tariff cap. To this end, we as-
sume that political shocks are distributed over [γ�γ], where 1 ≤ γ < γ < 7/4.
Letting π denote domestic profits as before, we can now explicitly represent
the welfare functions as

b(π) = 1
2
(−1 + 9

√
π − 17π)� v(π) = 1

4
(2 − 6

√
π + 9π)�(17)

where π = 1/9.27

We confirm next that Assumption 1 holds in the linear-quadratic model.

LEMMA 2: Let Π = [0�1/9] and Γ = [γ�γ], for 1 ≤ γ < γ < 7/4. Let b :Π →
R be defined as in (17). Let w :Γ ×Π → R be defined as w(γ�π)= γπ+b(π)+
v(π), where v is as in (17). Then Assumption 1 holds.

26In particular, τf (γ) = (8γ − 5)/[4(17 − 2γ)], which strictly exceeds τe(γ) = 4(γ − 1)/(25 −
4γ) for γ ∈ [1�7/4)�

27In this example, π = 1/9 is obtained when the prohibitive tariff of 1/6 is imposed. The ex-
pressions for b(π), v(π), and π are derived in our Supplemental Material.
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To prove Lemma 2, we observe that the function w(γ�π)= γπ +b(π)+ v(π),
for b and v as defined in (17), is continuous in both arguments. For any γ0,
the function w(γ0� ·) is concave on Π, and twice differentiable on (0�1/9). The
function b is strictly concave and twice differentiable on (0�1/9). The corre-
sponding flexible allocation is πf(γ) = (9/(34 − 4γ))2, which is interior and
strictly increasing for γ ∈ Γ . Finally, wπ(γ�π) = 3

2
√
π

− 25/4 + γ is continuous
on Γ × (0�1/9).

Using (17), we may easily verify, for the linear-quadratic example, that κ =
2/3 > 1/2. If E[γ] > [7 + 8γ]/12� then we may also verify that γH is interior.28

Thus, if f is nondecreasing, then we may conclude from Proposition 3 that
the optimal trade agreement is represented by an optimal tariff cap with γH ∈
(γ�γ).29

We now summarize the above discussion and extend the result to nonin-
creasing densities.

COROLLARY 2: In the trade model under perfect competition, let Q(p) = p/2,
Q∗(p)= p, u(c)= c− c2/2, and let the political shocks be distributed over [γ�γ],
where 1 ≤ γ < γ < 7/4. Assume that E[γ]> [7 + 8γ]/12. If either:

(i) f is nondecreasing on Γ , or
(ii) f is differentiable on Γ and f (γ)+ ( 7

4 − γ)f ′(γ)≥ 0 for all γ ∈ Γ ,
then an optimal trade agreement is represented as an optimal tariff cap with γH ∈
(γ�γ).

The proof appears in Appendix F.
Corollary 2 confirms that the optimal tariff cap identified by Bagwell and

Staiger (2005) in fact represents an optimal trade agreement for a broad fam-
ily of distributions and when the possibility of money burning is also allowed.
Indeed, Corollary 2 holds as stated whether or not money burning is allowed
in the analysis, since κ= 2/3 < 1 in the linear-quadratic model of trade.30

28To show that γH ∈ (γ�γ) exists, we recall that a sufficient condition for an interior maximizer
is that v′(πf (γ)) + E[γ] − γ > 0. Calculations confirm that this inequality holds if and only if
E[γ]> [7 + 8γ]/12. When γ = 1, this inequality reduces to Bagwell and Staiger’s (2005) assump-
tion that E[γ]> 5/4.

29In fact, in this case, we can confirm that γH is unique. Given that κ > 1/2� if f (γ) is nonde-
creasing, we may see from the proof of Proposition 3 that v′(πf (γ

c))−γc +E[γ|γ > γc] is strictly
decreasing, which implies that γH is unique.

30Bagwell and Staiger (2005) also considered the potential role of escape clauses in trade
agreements. In one extension, they allowed that governments negotiate two bindings, where the
lower (higher) binding applies during normal (exceptional) times. An incentive-compatible es-
cape clause must entail some cost if it is to be used only when political pressure is high. As they
explained, such a cost could be provided if the escape clause binding were set at a high level and
if tariffs between the two bindings were not allowed. Our analysis allows for the possibility of
such “strong” escape clauses. Due to the presence of money burning, which might correspond
to administrative and potential legal costs, our analysis includes, as well, a more realistic escape
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Note that part (ii) of Corollary 2 includes densities that are decreasing over
ranges or even over the entire support, provided that the rate of decrease is
not so great as to violate the inequality, f (γ) + ( 7

4 − γ)f ′(γ) ≥ 0. As well, the
condition holds for any concave density for which f (γ)+ ( 7

4 − γ)f ′(γ) ≥ 0, or
for any convex density for which f (γ)+ ( 7

4 − γ)f ′(γ)≥ 0.31

An interesting special case is that the density is uniform.32 In this case, γH =
3γ − 7

2 and the optimal tariff cap is

τ = 1
6

− 7(7 − 4γ)
24(4 − γ)

�

Recalling that a tariff of 1/6 is prohibitive, we see that the optimal tariff cap
allows for positive trade volume since γ < 7/4. The optimal tariff cap binds
for higher types (i.e., for γ ≥ γH), while lower types apply their flexible (Nash)
tariffs and thus exhibit binding overhang. Interestingly, as γ approaches 7/4,
τ approaches 1/6 and so γH approaches γ. Thus, when the distribution is uni-
form and the highest level of support approaches the limiting case in which
zero trade volume is efficient, the optimal trade agreement entails full flexibil-
ity for all types! In this limiting case, governments with private information are
unable to design a trade agreement that improves upon the noncooperative
(Nash) benchmark.

The results presented above also provide a foundation for two recent analy-
ses of tariff caps. Beshkar, Bond, and Rho (2011) extended the linear-quadratic
model to allow that countries have asymmetric sizes. Restricting attention to
the family of tariff caps, they provided theoretical and empirical support for the
prediction that smaller countries have higher optimal tariff caps and a greater
probability of binding overhang. In this context, our analysis provides condi-
tions ensuring that an optimal trade agreement indeed takes the form of a
tariff cap. Amador and Bagwell (2012) applied the propositions above to con-
sider the possibility that a government’s private information concerns the value
of tariff revenue. While most political economy models of trade policy assume
that producer surplus receives greater relative weight in the government wel-
fare function, their extension may be of special relevance for some developing
countries.33 The problem of designing an optimal trade agreement when the
value of tariff revenue is private information does not immediately fit into the

clause binding that defines only a maximum tariff for exceptional times. In any case, under the
conditions that we provide, an escape clause of this nature does not represent an improvement
relative to the optimal tariff cap.

31To see this, note that the derivative of f (γ)+ ( 7
4 −γ)f ′(γ) with respect to γ is ( 7

4 −γ)f ′′(γ)�
32For further discussion of the optimal tariff cap under a uniform distribution, see Bagwell and

Staiger (2005).
33For further discussion of political economy models of trade policy, see, for example, Baldwin

(1987), Feenstra and Lewis (1991), and Grossman and Helpman (1995).
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framework presented above; however, they provided an approach for embed-
ding this problem into the framework above when money burning is allowed.

A Log Utility With Endowments Example. The linear-quadratic example is
tractable and offers a convenient setting with which to illustrate our findings.
An important benefit of our general analysis is that we can employ our find-
ings to characterize an optimal trade agreement for other examples, too. In
Appendix G, we consider an example with log utility and endowments (inelas-
tic supply), where the endowment of good x in the foreign country exceeds that
in the home country. Specifically, we assume that u(c) = log(c), Q(p) = 1, and
Q∗(p∗)=Q∗, where Q∗ > 1. For Q∗ sufficiently close to 1, we find that κ ≈ 2/3.
Applying Proposition 3, we conclude that a tariff cap is then optimal for distri-
butions with nondecreasing densities when Q∗ is close to 1.

We note that we could have obtained a version of Corollary 2 by applying
results from Alonso and Matouschek (2008). In Section 5, we discuss in detail
the relationship between our Propositions 1 and 2 and the findings of Alonso
and Matouschek (2008) and the earlier delegation literature. Here, we make
two points that are of particular relevance for the trade-agreement applica-
tion. First, the results from Alonso and Matouschek (2008) apply only if money
burning is ruled out. Second, the results from the earlier delegation literature
also fail to apply when preferences are not linear-quadratic, as in the log utility
example, and as in the model with monopolistic competition that we discuss
next.

4.2. Optimal Agreement Under Monopolistic Competition

We consider now the optimality of tariff caps in a new-trade setting fea-
turing monopolistic competition and intra-industry trade with a fixed number
of firms. In particular, we analyze trade policy in a two-country setting with
an outside good in which consumer demand exhibits a constant elasticity of
substitution (CES) across differentiated varieties. The outside good is freely
traded and serves to fix wages. As Helpman and Krugman (1989) discussed, an
import tariff in this setting does not alter the terms of trade but does switch ex-
penditures toward domestic varieties. An import tariff then “shifts profit” from
foreign to domestic firms, as Ossa (2012) argued. Allowing that the domestic
government faces private political pressures, we use Proposition 3 to establish
conditions for the new-trade setting under which an optimal trade agreement
takes the form of a tariff cap.34

34Chang (2005) provided micro-foundations for the government welfare functions that we con-
sider. In Chang’s model, an exogenous and inelastic supply of a sector-specific factor determines
the number of varieties produced in a country, and the owners of the sector-specific input may
engage in lobbying. We abstract from the lobbying game and posit directly that the domestic gov-
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Consider a setting with two countries, each with a representative household.
Let us consider the following utility function for the home country’s consumer:

U = logD+N�

where D is a CES aggregate composed of differentiated goods. We define D as

D=
(

n∑
i=1

(DiH)
α +

n∗∑
i=1

(DiF)
α

)1/α

�

where DiH denotes the amount consumed of variety i produced at home and
DiF denotes the amount consumed of variety i produced abroad. The value of
N represents the consumption of a numeraire or outside good.

There are n and n∗ monopolistically competitive firms at home and abroad,
respectively, where n and n∗ exceed unity. Each firm produces a single variety
and hires labor in a competitive domestic labor market. We assume that the
number of firms in each country is fixed so that firms earn positive ex ante
profit.35 We can then consider the profit-shifting role of trade policy and allow
for political pressures stemming from producer interests. We also assume that
α ∈ (0�1), so as to ensure a well-defined profit-maximizing price for each firm.

We consider a simple production technology in which labor is the only fac-
tor of production in each country. Labor is immobile across countries and is
used in the production of both the differentiated goods and the numeraire.
The production of the numeraire good has a constant unit labor requirement
equal to unity, while the production of each differentiated variety has a con-
stant unit labor requirement equal to λ > 0. The total amount of labor in each
country is denoted by L and L∗� respectively. The numeraire good is produced
in each country and freely traded, which ensures that, in each country, trade is
balanced and the wage rate is unity.

The domestic price index (i.e., the price index faced by consumers at home)
is

P =
(

n∑
i=1

(pi)
α/(α−1) +

n∗∑
i=1

(
pi∗(1 + τ)

)
α/(α−1)

)
(α−1)/α�

where pi represents the price of home variety i at home and pi∗ represents
the price of foreign variety i abroad. The value of τ represents an (ad valorem)

ernment maximizes a welfare function in which profits in the differentiated sector may receive
greater weight. We assume further that the domestic government is privately informed about its
preferences.

35Ossa (2012) also fixed the number of firms in each country. Instead of directly fixing the
number of firms, we could obtain the same result by expanding the model to require a specific
factor for the differentiated sector, where the supply of the factor is exogenous and inelastic. For
further discussion, see Chang (2005) and Helpman and Krugman (1989).
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import tariff that the home country imposes on foreign goods, so that pi∗(1+τ)
is the consumption price in the home country of a foreign-produced variety i.
The price index for foreign consumers is symmetric, with a foreign import tariff
τ∗ affecting the consumption prices in the foreign country of home-produced
varieties. We restrict τ and τ∗ to reside in (−1�∞).

We consider next the determination of prices and the resulting price indices.
The home demands for home- and foreign-produced goods, respectively, are
isoelastic and given by

DiH(pi�P)= Pα/(1−α)(pi)
−1/(1−α) and

DiF(pi∗�P)= Pα/(1−α)
(
pi∗(1 + τ)

)−1/(1−α)
�

Under monopolistic competition, each firm ignores the impact of its price on
price indices. Each firm then maximizes its profit by setting a price equal to a
constant markup over marginal cost:

pi = pi∗ = λ

α
�

Thus, for a home-produced variety, the consumption prices for home and for-
eign consumers, respectively, are λ

α
and λ

α
(1 + τ∗). As Helpman and Krugman

(1989) emphasized, an important feature of the model is thus that an im-
port tariff does not generate a terms-of-trade externality: the world or export
price for a given variety is not affected by the magnitude of the import tariff.
With profit-maximizing prices now determined, we see that the price indexes
at home and abroad are given as follows:

P = λ

α

(
n+ n∗(1 + τ)α/(α−1)

)(α−1)/α
and

P∗ = λ

α

(
n∗ + n(1 + τ∗)α/(α−1)

)(α−1)/α
�

We can now define the following components of home welfare:

CS = 1 − α

α
log

(
n+ n∗(1 + τ)α/(α−1)

) + log(α/λ)− 1 +L�

PS = (1 − α)

(
n

n+ n∗(1 + τ)α/(α−1)
+ n(1 + τ∗)1/(α−1)

n(1 + τ∗)α/(α−1) + n∗

)
�

TR = 1 − n+ n∗(1 + τ)1/(α−1)

n+ n∗(1 + τ)α/(α−1)
�

where CS denotes consumer surplus enjoyed by home consumers, PS rep-
resents producer surplus or profit for differentiated-goods home firms, and
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TR indicates the tariff revenue generated by τ for the home country. No-
tice that CS and TR are functions of the home tariff τ but are indepen-
dent of the foreign tariff τ∗� By contrast, PS depends in a separable fash-
ion on both tariffs. Intuitively, a higher home tariff shifts the expenditures
of home consumers toward home-produced varieties, which increases profit
for home firms on domestic sales. A higher foreign tariff similarly shifts ex-
penditures of foreign consumers away from home-produced varieties, which
reduces profit for home firms on foreign sales. These respective effects are
separable, since the import tariff imposed in one country does not affect the
terms of trade and thus does not alter the price index in the other country. The
respective functions for the foreign country (CS∗, PS∗, and TR∗) are symmet-
ric.

We posit that the home government welfare is a weighted sum of home con-
sumer surplus, profit, and tariff revenue, where profit receives an extra weight
denoted by γ ≥ 1. The welfare function for the home government is then

WH = CS + TR + γPS�

As before, the political economy weight of the home government, γ, is un-
known at the time that the agreement is formed and is privately known by the
home government before the home tariff is applied. We assume that γ has a
continuous distribution F(γ) with bounded support Γ = [γ�γ], and with asso-
ciated density f (γ).

To focus attention on the problem of the home government, we assume that
private information is one-sided. Thus, the political economy weight of the
foreign government, γ∗, is fixed and commonly known. For simplicity, we set
γ∗ = 1 and thus assume that the foreign government maximizes national real
income.36 The welfare function for the foreign government is thus

WF = CS∗ + TR∗ + PS∗�

To map this setup into our framework, it is convenient to do the following
change of variables. Define π and π∗ to be

π = n

n+ n∗(1 + τ)α/(α−1)
and π∗ = n∗

n∗ + n(1 + τ∗)α/(α−1)
�

36As in the perfect competition setting, it is straightforward to consider a slightly more general
model with a symmetric structure. For the monopolistic competition setting, a symmetric model
obtains if we include a second differentiated sector with a CES aggregate that enters the utility
function in a symmetric and additively separable fashion. The foreign government is privately
informed about its political economy weight for foreign firms in this sector, and the home gov-
ernment has a known political economy weight of unity for home firms in this sector. Given the
existence of an outside good, we can study the optimal trade agreement across sectors indepen-
dently, as we do here.
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Notice that π strictly increases with τ and that π∗ likewise strictly increases
with τ∗. Since τ and τ∗ are restricted to lie in (−1�∞), it follows that π and π∗
must lie in Π = (0�1). To simplify the algebra that follows, we also impose that
n = n∗. We can write

CS
1 − α

= − 1
α

logπ + 1
α

logn+ log(α/λ)− 1 +L

1 − α
�

PS
1 − α

= π + (π∗)(α−1)/α(1 −π∗)1/α�

TR
1 − α

= 1
1 − α

(
1 −π − (π)(α−1)/α(1 −π)1/α

)
�

where we have used the assumption that n = n∗. Henceforth, we work with π
and π∗ as our choice variables. Let us then define the following functions:

b(π) = − 1
α

logπ − 1
1 − α

π − 1
1 − α

(π)(α−1)/α(1 −π)1/α�(18)

v(π) = (π)(α−1)/α(1 −π)1/α�(19)

where v′(π) < 0 < v′′(π) for all π ∈ Π.
It follows that the welfare functions can be written as

WH = (1 − α)
(
γπ + b(π)+ γv(π∗)

) +CH�

WF = (1 − α)
(
π∗ + b(π∗)+ v(π)

) +CF�

for some constants CH and CF . Note that this representation exploits the sepa-
rable fashion in which home and foreign tariffs affect the profit of any firm, as
described above.

The problem of designing an optimal trade agreement is then to find an
allocation for the home country π :Γ → Π that is incentive compatible and
maximizes the total welfare of the governments. Given the separable manner
in which π and π∗ enter the welfare functions, the optimal trade agreement
solves Problem (P) subject to (1), with w(γ�π) = γπ + b(π)+ v(π). We have
the following result.

LEMMA 3: Let Π = (0�1) and Γ = [γ�γ]. Let b :Π → R be defined as in (18).
Let w :Γ ×Π → R be defined as w(γ�π) = γπ + b(π)+ v(π), where v is as in
(19). If 1 >α> 1/2 and α(1 − α)γ < 1� then Assumption 1 holds.

The proof appears in the Appendix.
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For α ∈ (1/2�1), the value of κ, according to equation (2), is37

κ = inf
π∈Π

{
α− α(1 −π)(1−2α)/απ(α−1)/α

α− (1 −π)(1−2α)/απ(α−1)/α

}

= 1 −
(

1
1 − α

−
(

2α− 1
1 − α

)(2α−1)/α)−1

∈ (0�1)�

We can further show that κ ≥ 1/2 for α ≥ 2/3. Recall as well that v′(π) < 0.
Together with the results from Lemma 3, these findings indicate that we can
apply Proposition 3 to obtain the following corollary.

COROLLARY 3: Let 1 > α ≥ 2/3 and α(1 − α)γ < 1. For any nondecreasing
density f , if there exists γH ∈ (γ�γ) that solves equation (4), then the optimal trade
agreement in the monopolistic competition model is a tariff cap.

Corollary 3 requires the existence of an interior γH for a cap allocation to be
optimal. A simpler condition to check is E[γ]−αγ−(2−α)/α > 0, which guar-
antees that there exists an interior γH . Under the assumptions of Corollary 3,
the simpler condition holds as γ → 1 and γ → 1/(α(1 − α)), and is thus satis-
fied if the support for γ is sufficiently wide. We note further that an interior γH

ensures that the corresponding tariff cap is strictly positive.38

The estimation performed by Eaton and Kortum (2002) implies a value of
α= 0�89 (corresponding to an elasticity of substitution across varieties of 9�28),
and the estimation of Bernard, Eaton, Jensen, and Kortum (2003) implies a
value of α = 0�78 (corresponding to an elasticity of 4�6).39 Both of these esti-
mates lie above the critical cutoff of 2/3 identified in Corollary 3 for the op-
timality of a cap under a nondecreasing density. Related to this, Broda and
Weinstein (2006) estimated an average elasticity of substitution for 10-digit
(TSUSA) goods of around 8 (and around 4 for within 3-digit (TSUSA) goods),
also generating a value of α above the cutoff.

37The result follows from the fact that (1 − π)(2α−1)/απ(1−α)/α achieves a maximum at π = 1−α
α

if 1 >α> 1/2.
38Notice that πf (γ) > 1/2, given that b′(1/2) = 0; it thus follows from the definition of π that

the flexible tariff is strictly positive for γ = γ and thus for all higher values of γ, including γH . To
derive the simpler condition for an interior γH , we note further that v′(πf (γ)) = (1 −α)γ − (1 −
α)/(απf (γ))− 1. One can then use the condition v′(πf (γ))+ E[γ] − γ > 0, discussed right after
Proposition 3. Finally, a nondecreasing density implies that E[γ] ≥ (γ + γ)/2, and we may use
this inequality to verify that the simpler condition then holds as γ → 1 and γ → 1/(α(1 − α)).

39See Dekle, Eaton, and Kortum (2007), Ossa (2011), and Ossa (2012), for example, for further
use of these estimates.
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4.3. Imperfect Transfers

Our findings above establish conditions for the optimality of tariff caps in
trade models with perfect and monopolistic competition. These findings are
derived in settings that allow for the burning of resources; however, we assume
that contingent transfers of resources from one government to the other are
infeasible. In this subsection, we relax this assumption.

Suppose now that instead of no transfers, there is imperfect transferabil-
ity from the home to the foreign government. In particular, let t represent a
transfer from the home government to the foreign one, and suppose that only
a fraction ρ ∈ [0�1] of this transfer actually reaches the foreign government.
We thus posit a “leaky bucket” model of transfers, in which a fraction (1 − ρ)
of any transfer is lost.

The setup with money burning stated in Problem (P) corresponds to the case
where ρ= 0. More generally, for any ρ ∈ [0�1], the welfare function under the
agreement becomes∫

Γ

(
γπ(γ)+ b

(
π(γ)

) + v
(
π(γ)

) − (1 − ρ)t(γ)
)
dF(γ)�(20)

The goal of the agreement is then to maximize (20) subject to the same con-
straint set as in Problem (P).

We may use our findings to analyze the problem with imperfect transferabil-
ity as well. The key point is that we may multiply (20) by 1

1−ρ
and rewrite the

objective as∫
Γ

(
w̃

(
γ�π(γ)

) − t(γ)
)
dF(γ)�

where w̃(γ�π) = 1
1−ρ

(γπ + b(π) + v(π)) = 1
1−ρ

w(γ�π). Hence, the problem
with imperfect transferability maps into Problem (P), after a rescaling of the
principal’s objective function. Note that parts (b) of Propositions 1 and 2 apply
unchanged to this problem, once w has been replaced by w̃ in conditions (c1)–
(c3′) and in the definition of κ given by equation (3).

The optimal interval allocation is independent of ρ, as money burning is by
definition not used. We can thus study how changes in ρ affect the sufficient
conditions by checking how conditions (c1)–(c3′) change for given values of γL

and γH . Note first that if κ is initially less than 1, then a marginal increase in
ρ does not affect the sufficient conditions at all. For sufficiently high values of
ρ, however, κ = 1 is necessary. Further, when κ = 1, an increase in ρ makes
the sufficient conditions harder to satisfy. In the limit, as ρ → 1, the first best
agreement can be implemented if it is monotonic (as it is in the trade applica-
tions above). In this limiting case, an interval allocation is optimal only if it is
first best, and hence optimal for all ρ ∈ [0�1].
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In the trade model with perfect competition, κ < 1 obtains if v′′(π) > 0,
which, as noted, in turn holds if Q′′ ≤ 0, Q′′

∗ ≤ 0, and u′′′ ≥ 0. In particular,
κ = 2/3 in the linear-quadratic example, while κ ≈ 2/3 in the example with
log utility and endowments when Q∗ is sufficiently close to 1. Likewise, in the
trade model with monopolistic competition, κ ∈ (0�1) for α ∈ (1/2�1). Thus,
in all of these settings, the optimality of a tariff cap is robust to the possibility
that resources may be transferred in a sufficiently inefficient manner (i.e., for
ρ sufficiently close to zero). At the same time, our discussion in this subsection
implies that the optimal tariff cap does not maximize expected government
welfare when a sufficiently efficient transfer instrument is available.

5. RELATION TO PREVIOUS LITERATURE

In this section, we discuss how our propositions can be used to obtain previ-
ous results found in the delegation literature. In particular, we show that our
Propositions 1 and 2 deliver, as special cases, the main results on interval del-
egation obtained by Alonso and Matouschek (2008), Amador, Werning, and
Angeletos (2006), and Ambrus and Egorov (2009).

5.1. Relation to Alonso and Matouschek

Alonso and Matouschek (2008) studied the optimal delegation problem in
the absence of money burning. We show that our Propositions 1 and 2 can be
used to derive Alonso and Matouschek’s (2008) characterization of sufficient
and necessary conditions for interval delegation to be optimal.

In their main analysis, Alonso and Matouschek (2008) assumed that the prin-
cipal’s welfare function is quadratic, and that, for any given state of nature, the
agent’s welfare function is single-peaked and symmetric around the agent’s
preferred action.40 Alonso and Matouschek (2008) solved the following prob-
lem:

max
π:Γ→R

∫
γ∈Γ

w
(
γ�π(γ)

)
dF(γ)�

where w(γ�π)≡ −(π−πP(γ))
2/2 and subject to the agent choosing according

to any utility function of the form vA(π −πf (γ)�γ), where vA is single-peaked
and symmetric around zero with respect to its first argument and where πf is
strictly increasing.

40Alonso and Matouschek (2008) also identified sufficient conditions for interval delegation
when the principal’s preferences take a more general form, while maintaining the symmetry of
the agent’s preferences. However, the preferences that they allowed require the absence of any
bias for an intermediate type. This requirement is not met in many applications, including the
trade-agreement application that we discuss previously. Our approach permits weaker sufficient
conditions, holds for a more general class of preferences, and identifies a family of preferences
for which the sufficient conditions are also necessary.



1572 M. AMADOR AND K. BAGWELL

In this setup without money burning, it is without loss of generality to choose
a quadratic utility for the agent, vA(x�γ) = −x2/2.41 It is also without loss of
generality to assume that πf(γ) = γ.42 It follows that the agent’s utility can
be written, after removing parts not affected by choices, as γπ + b(π), where
b(π) ≡ −π2/2.

This utility specification satisfies the conditions for Proposition 2, part (a),
with A = 1, C(γ) = πP(γ), and B(γ) = −(πP(γ))

2/2. Hence, the conditions
we provide in Proposition 1 are both sufficient and necessary. We thus obtain
Alonso and Matouschek’s (2008) result regarding the optimality of what they
called threshold delegation as a special case of our results.43

5.2. Relation to Amador, Werning, and Angeletos

Amador, Werning, and Angeletos (2006) studied the following hyperbolic
consumption-savings problem: choose u :Γ → R and w :Γ → R such that

max
u�w

{∫
Γ

(
γu(γ)+βw(γ)

)
dF(γ)

}
subject to:

γ ∈ arg max
γ̃∈Γ

{
γu(γ̃)+βδw(γ̃)

}
�(21)

C
(
u(γ)

) +K
(
w(γ)

) ≤ y; ∀γ ∈ Γ�(22)

where C and K are strictly increasing and convex cost functions. The value of
β represents the standard discount factor, and δ ∈ (0�1) captures the hyper-
bolic adjustment. The value of γ is a shock to the marginal utility of current
consumption, which is private information to the agent. The constraint (21)
is the incentive-compatibility constraint and the constraint (22) is the budget
constraint.

We map this into our setting with money burning. To do this, we let t(γ) ≡
βδ(W (y −C(u(γ)))− w(γ)), where W is defined to be the inverse of K. Let-
ting π = u, we can write the problem as

max
{∫

Γ

(
γδπ(γ)+βδW

(
y −C

(
π(γ)

)) − t(γ)
)
dF(γ)

}
subject to:

γ ∈ arg max
γ̃∈Γ

{
γπ(γ̃)+βδW

(
y −C

(
π(γ̃)

)) − t(γ̃)
}
�

t(γ)≥ 0; ∀γ ∈ Γ�

41Under a single-peaked and symmetric utility specification, the agent with type γ prefers π0 to
π1 if and only if |π0 −πf (γ)| < |π1 −πf (γ)|. This ranking also holds for the quadratic specifica-
tion, and hence guarantees that any allocation satisfies incentive compatibility under the original
utility specification if and only if it does so under the quadratic one.

42Alonso and Matouschek (2008) showed that it is without loss of generality to assume πf (γ) =
α+βγ for any α and β> 0. We can then choose α = 0 and β= 1.

43See our Supplemental Material for an exact statement of the above.
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Using our notation, the above problem is equivalent to our problem with
money burning, (P2′), with

b(π) ≡ βδW
(
y −C(π)

); w(γ�π)≡ γδπ + b(π)�

Note that, under this mapping, b is strictly concave, and w(γ0� ·) is also strictly
concave for any γ0 ∈ Γ and satisfies the conditions of Proposition 2, part (b),
with A = 1. Hence, we can use Propositions 1 and 2 to derive necessary and
sufficient conditions for the optimality of interval delegation, which delivers
the minimum-savings results of Amador, Werning, and Angeletos (2006).

5.3. Relation to Ambrus and Egorov

Ambrus and Egorov (2009) analyzed a delegation problem with a principal
and a privately informed agent. An initial transfer between the principal and
the agent is used to satisfy the agent’s ex ante participation constraint, but
transfers between the principal and agent are otherwise infeasible.44 A contract
specifies incentive-compatible actions and money burning levels for the agent
as functions of the agent’s private information or type. They explicitly solved
for optimal contracts in the quadratic-uniform model, in which the principal
and agent have quadratic utility functions and the type is distributed uniformly
over [0�1].

The quadratic-uniform model studied by Ambrus and Egorov (2009) can be
mapped into our problem with money burning, Problem (P), by assuming that

w(γ�π)= −α+ 1
2

(
π − γ − β

α+ 1

)2

� and b(π) = βπ − π2

2
�

where α > 0 and 0 < β < 1.45 It follows that πf(γ) = γ + β. Note that the
preferences above satisfy our conditions in Proposition 2 with A = 1 + α,
B(γ) = −[γ + β/(1 + α)]2/2, and C(γ) = γ − αβ/(1 + α), so the conditions
(c1), (c2), (c2′), (c3), and (c3′) are both necessary and sufficient for the opti-
mality of the interval delegation allocation. Ambrus and Egorov (2009) also
assumed that F(γ)= γ with γ = 0 and γ = 1.

We can now obtain Ambrus and Egorov’s (2009) characterization of op-
timal interval delegation using our propositions. When α ≤ 1, we can use
Proposition 1, part (b), to show that the cap allocation where γL = γ and
γH = 1 − 2αβ/(1 + α) is optimal.

To illustrate how our propositions can be applied to generalize previous re-
search, we maintain the quadratic preferences of Ambrus and Egorov (2009)

44They also considered an extended model in which contingent transfers are allowed.
45See our Supplemental Material for details. While Ambrus and Egorov highlighted cases in

which β < 1, they also discussed the possibility that β ≥ 1. Below, we maintain the assumption
that 0 <β< 1.
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but relax their uniform distribution assumption. When α ≤ 1, we can use
Proposition 1 to show that a cap allocation is optimal for a more general class
of distributions. As we show in our Supplemental Material, if (i) E[γ] − γ >
αβ

α+1 , then there exists γH ∈ (γ�γ) such that E[γ|γ ≥ γH] − γH = αβ/(1 + α).
If, in addition, (ii) F(γ) + αβf(γ) is nondecreasing for γ ∈ [γ�γH], and
(iii) (1 + α)E[γ̃|γ̃ ≥ γ] − γ ≤ α(γH + β) for γ ∈ [γH�γ], then a cap alloca-
tion with γH ∈ (γ�γ) is optimal. We show further that hypothesis (iii) holds
if d(γ) ≡ E[γ̃|γ̃ ≥ γ] − γ is convex, which, in turn, holds if f is twice dif-
ferentiable, nondecreasing, and not too convex.46 Using this, we can show,
for example, that in the case of a power distribution, where F(γ) = γn and
0 = γ < γ = 1, a cap allocation is optimal if n/(n+ 1) > αβ/(1 + α)�n ≥ 1 and
α ≤ 1. The case of a uniform distribution is then captured as a special case
when n= 1�

6. CONCLUSION

We consider a general representation of the delegation problem, and we pro-
vide conditions under which an interval allocation is an optimal solution to this
problem. We analyze both the delegation problem without money burning and
the delegation problem with money burning. As we show, important character-
izations of optimal delegation in previous work can be captured as special cases
of our findings. We also develop a new application of delegation theory to the
theory of trade agreements among privately informed governments. For both
perfect and monopolistic competition settings, we establish conditions under
which tariff caps are optimal and thereby provide interpretations of negotia-
tions over tariff bindings and also binding overhang.

To establish our findings, we utilize and extend the Lagrangian methods de-
veloped by Amador, Werning, and Angeletos (2006). Our analysis allows that
the Lagrangian may fail to be concave with respect to the action, which is a
possibility that arises naturally in the trade application, for example. We ex-
pect that our techniques will be useful for other studies of applied mechanism
design when contingent transfers are infeasible.

Our work suggests several promising directions for future research. For ex-
ample, the general representation of the delegation problem that we analyze
assumes a single agent. We expect that our Lagrangian methods can be ex-
tended to characterize optimal delegation in settings with multiple agents.
Likewise, our analysis of optimal tariff caps provides a foundation for further
analysis of GATT/WTO rules concerning exceptions for contingent protection.
We plan to pursue these and other extensions in future research.

46As we show in the Supplemental Material, the exact result is that d is convex if (i) f ′(γ) ≥ 0
for all γ ∈ Γ� (ii) if there exists γ ∈ (γ�γ) such that f ′(γ) > 0� then f ′(γ) > 0� and (iii) f ′′(γ) ≤
2f ′(γ)2/f (γ)+ f ′(γ)f (γ)/(1 − F(γ)) for all γ ∈ Γ .
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APPENDIX A: PROOF OF LEMMA 1

The welfare function can, under an interval allocation, be written as

Obj(γL�γH) =
∫ γL

γ

w
(
γ�πf (γL)

)
f (γ)dγ +

∫ γH

γL

w
(
γ�πf (γ)

)
f (γ)dγ

+
∫ γ

γH

w
(
γ�πf (γH)

)
f (γ)dγ�

If γL is interior (i.e., we are in part (iv)), then the necessary first-order condi-
tion for an interior γL is

dObj
dγL

=
(∫ γL

γ

wπ

(
γ�πf (γL)

)
f (γ)dγ

)
π ′

f (γL)= 0�

Using that π ′
f (γL) > 0 by assumption, we have that condition (iv) is necessary.

Computing the second derivative of the welfare function we have that

d2Obj
dγ2

L

=
(∫ γL

γ

wπ

(
γ�πf (γL)

)
f (γ)dγ

)
π ′′

f (γL)

+(
wπ

(
γL�πf (γL)

)
f (γL)

)
π ′

f (γL)

+
(∫ γL

γ

wππ

(
γ�πf (γL)

)
f (γ)dγ

)(
π ′

f (γL)
)2
�

Now note that if γL = γ, then dObj/dγL = 0 and d2Obj/dγ2
L =wπ(γ�πf (γ))×

f (γ)π ′
f (γ). So if γL = γ is optimal, it must be that wπ(γ�πf (γ)) ≤ 0. This

implies that condition (iii) is necessary. The proofs for conditions (i) and (ii)
follow a similar argument, so we omit them. Q.E.D.

APPENDIX B: A MODIFIED VERSION OF LUENBERGER’S
SUFFICIENCY THEOREM

Here we provide a slightly modified version of Theorem 1 in Section 8.4 of
Luenberger (1969, p. 220) that makes explicit the complementary slackness
condition.

THEOREM 1: Let f be a real valued functional defined on a subset Ω of a linear
space X . Let G be a mapping from Ω into the linear space Z having nonempty
positive cone P . Suppose that (i) there exists a linear function T :Z → R such that
T(z) ≥ 0 for all z ∈ P , (ii) there is an element x0 ∈Ω such that

f (x0)+ T
(
G(x0)

) ≤ f (x)+ T
(
G(x)

)
for all x ∈ Ω�
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(iii) −G(x0) ∈ P , and (iv) T(G(x0))= 0. Then x0 solves

min f (x) subject to: −G(x) ∈ P� x ∈Ω�

PROOF: Note that from (ii) and (iii), x0 is in the constraint set of the min-
imization problem. Suppose that there exists an x1 ∈ Ω with f (x1) < f(x0)
and −G(x1) ∈ P , so that x0 is not a minimizer. Then, by hypothesis (i),
T(−G(x1)) ≥ 0. Linearity implies that T(G(x1)) ≤ 0. Using this together with
(iv), it follows that f (x1)+T(G(x1)) < f(x0)= f (x0)+T(G(x0)), which con-
tradicts hypothesis (ii). Q.E.D.

APPENDIX C: PROOF OF PROPOSITION 1

We prove each of the parts of this proposition separately. For both cases, let
π� :Γ → Π denote the proposed interval allocation with bounds γL�γH such
that conditions (c1), (c2), (c2′), (c3), and (c3′) are satisfied.

Proof of Part (a) of Proposition 1

Our objective here is to be able to apply Theorem 1 in Appendix B, which is
a modified version of the sufficiency Theorem 1 of Section 8.4 in Luenberger
(1969, p. 220).

By writing the incentive constraints in their usual integral form plus a mono-
tonicity restriction,47 we can rewrite Problem (P) with constraint (1) as

max
π:Γ→Π

∫
w

(
γ�π(γ)

)
dF(γ) subject to:(P1′)

γπ(γ)+ b
(
π(γ)

) =
∫ γ

γ

π(γ̃)dγ̃ +U for all γ ∈ Γ�(23)

π nondecreasing,(24)

where U ≡ γπ(γ)+ b(π(γ)).
We follow and extend the Lagrangian approach used by Amador, Werning,

and Angeletos (2006). Following Amador, Werning, and Angeletos (2006), we
first embed the monotonicity constraint (24) into the choice set of π(γ). Then,
we write constraint (23) as two inequalities:∫ γ

γ

π(γ̃)dγ̃ +U − γπ(γ)− b
(
π(γ)

) ≤ 0 for all γ ∈ Γ�(25)

−
∫ γ

γ

π(γ̃)dγ̃ −U + γπ(γ)+ b
(
π(γ)

) ≤ 0 for all γ ∈ Γ�(26)

47See Milgrom and Segal (2002).
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The problem is then to choose a function π ∈ Φ so as to maximize (P1′)
subject to (25) and (26) and where the choice set is given by Φ ≡ {π|π :Γ →
Π and π nondecreasing}.

By assigning cumulative Lagrange multiplier functions Λ1 and Λ2 to con-
straints (25) and (26), respectively, we can write the Lagrangian for the prob-
lem:

L(π|Λ1�Λ2)(27)

≡
∫
Γ

w
(
γ�π(γ)

)
dF(γ)

−
∫
Γ

(∫ γ

γ

π
(
γ′)dγ′ +U − γπ(γ)− b

(
π(γ)

))
d
(
Λ1(γ)−Λ2(γ)

)
�

The Lagrange multipliers Λ1 and Λ2 are restricted to be nondecreasing func-
tions. Let Λ(γ)≡ Λ1(γ)−Λ2(γ). Integrating by parts the Lagrangian, we get48

L(π|Λ) =
∫
Γ

[
w

(
γ�π(γ)

)
f (γ)− (

Λ(γ)−Λ(γ)
)
π(γ)

]
dγ

+
∫
Γ

(
γπ(γ)+ b

(
π(γ)

))
dΛ(γ)−U

(
Λ(γ)−Λ(γ)

)
�

A proposed multiplier

Let us propose some nondecreasing multipliers Λ1 and Λ2 so that their dif-
ference, Λ, satisfies:

Λ(γ)=
⎧⎨⎩

1 + κ
(
1 − F(γ)

)
� γ ∈ [γH�γ],

1 −wπ

(
γ�πf (γ)

)
f (γ)� γ ∈ (γL�γH),

1 − κF(γ)� γ ∈ [γ�γL],
where κ is given by (2).

Note that Λ is well defined even when γL and γH are not interior. Below,
we will show that the hypothesis of Proposition 1, part (a), guarantees that
κF(γ) + Λ(γ) ≡ R(γ) is nondecreasing; hence, it follows that Λ(γ) can be
written as the difference of two nondecreasing functions, R(γ)− κF(γ).49

48Note that h(γ) ≡ ∫ γ

γ
π(γ′)dγ′ exists (as π is bounded and measurable by monotonicity)

and is absolutely continuous; and Λ(γ) ≡ Λ1(γ) − Λ2(γ) is a function of bounded variation,
as it is the difference between two nondecreasing and bounded functions. It follows then that∫ γ

γ
h(γ)dΛ(γ) exists (it is the Riemann–Stieltjes integral), and integration by parts can be done

as follows:
∫ γ

γ
h(γ)dΛ(γ) = h(γ)Λ(γ) − h(γ)Λ(γ) − ∫ γ

γ
Λ(γ)dh(γ). Since h(γ) is absolutely

continuous, we can replace dh(γ) with π(γ)dγ.
49For our purposes, only the difference between the multipliers matters: we just need to know

that there exist some nondecreasing functions whose difference delivers Λ.
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Concavity of the Lagrangian

We now check that the Lagrangian, when evaluated at the multipliers, is
indeed concave. First, we check that the jumps in Λ at γL and γH are nonneg-
ative. The jumps are

1 − κF(γL) ≤ 1 −wπ

(
γL�πf (γL)

)
f (γL)�

1 −wπ

(
γH�πf (γH)

)
f (γH)≤ 1 + κ

(
1 − F(γH)

)
�

To show this, we use conditions (c2), (c2′), (c3), and (c3′) as follows.
If γL > γ, we know that the inequality in (c3) must be satisfied with equality

at γL. Hence we can sign the derivative at γL, and we get that

wπ

(
γL�πf (γL)

) f (γL)

F(γL)
≤ κ�

which delivers that the jump at γL is nonnegative. If γL = γ, then (c3′) directly
implies that the jump at γ is nonnegative. A similar argument, using (c2) and
(c2′), works to show that the jump at γH is nonnegative.

Using that Λ(γ) = Λ(γ)= 1, we can write the Lagrangian as

L(π|Λ) =
∫
Γ

[
w

(
γ�π(γ)

) − κ
(
γπ(γ)+ b

(
π(γ)

))]
f (γ)dγ(28)

−
∫
Γ

(
1 −Λ(γ)

)
π(γ)dγ

+
∫
Γ

(
γπ(γ)+ b

(
π(γ)

))
d
(
κF(γ)+Λ(γ)

)
�

By the definition of κ in equation (2), we see that w(γ�π(γ))− κb(π(γ)) is
concave in π(γ); further, condition (c1) and the fact that jumps at γH and γL

are nonnegative imply that κF(γ)+Λ(γ) is nondecreasing. Hence, the above
Lagrangian is concave at the proposed multiplier.

Maximizing the Lagrangian

We now proceed to show that the proposed allocation π� maximizes the
Lagrangian. For this, we use the sufficiency part of Lemma A.2 in Amador,
Werning, and Angeletos (2006), which concerns the maximization of concave
functionals in a convex cone.
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First, let us extend b and w to the entire positive ray of the real line in the
following way50:

ŵ(γ�π) =
{
w(γ�π0)+wπ(γ�π0)(π −π0)� for π ∈ [0�π0),
w(γ�π)� for π ∈ [π0�π1],
w(γ�π1)+wπ(γ�π1)(π −π1)� for π ∈ (π1�∞),

for all γ ∈ Γ and π ∈ [0�∞), and for some values π0 and π1 such that
π0 ∈ (0�πf (γ)) and π1 ∈ (πf (γ)�π). We similarly define b̂. These extensions
are possible as a result of Assumption 1, which ensures the interiority of the
flexible allocation and the continuity of the derivative in (0�π). Then we let
Φ̂ = {π|π :Γ → R+ and π nondecreasing}. Note that Φ̂ is a convex cone, and
both b̂ and ŵ are continuous, differentiable, and concave. We then define the
extended Lagrangian, L̂(π|Λ), as in (28) but using ŵ and b̂ instead of w and
b. Note that, by concavity of the Lagrangian, L̂(π|Λ) ≥ L(π|Λ) for π ∈ Φ.
By the definitions of ŵ and b̂, it follows that L̂(π�|Λ) = L(π�|Λ). So if L̂ is
maximized at π�, so is L.

We can now use Lemma A.2 in Amador, Werning, and Angeletos (2006),
which states that the Lagrangian L̂ is maximized at π� if L̂ is a concave
functional defined in a convex cone Φ̂; ∂L̂(π�;π�|Λ) = 0; and ∂L̂(π�;x|Λ) ≤
0 for all x ∈ Φ̂, where the first-order conditions are in terms of Gateaux differ-
entials.51 Now note that ∂L̂(π�;x|Λ) = ∂L(π�;x|Λ) for all x ∈ Φ̂. This follows
from the definition of the Gateaux differential, the interiority of π�, and the
definitions of ŵ and b̂, which taken together imply that, for any x ∈ Φ̂, there
exists ε > 0 such that L̂(π� + αx) = L(π� + αx) for all 0 < α< ε. We can then
say that if

∂L
(
π�;π�|Λ) = 0�

∂L
(
π�;x|Λ) ≤ 0; for all x ∈ Φ̂�

then π� maximizes the Lagrangian L.

50Note that if Π = [0�∞), then this extension is not necessary as Φ is a convex cone.
51Given a function T :Ω → Y , where Ω⊂X and X and Y are normed spaces, if for x ∈Ω and

h ∈X the limit

lim
α↓0

1
α

[
T(x+ αh)− T(x)

]
exists, then it is called the Gateaux differential at x with direction h and is denoted by ∂T(x;h).
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For our problem, taking the Gateaux differential in direction x ∈ Φ̂ and using
that b′(πf (γ))= −γ, we get that52

∂L
(
π�;x|Λ) =

∫
Γ

[
wπ

(
γ�π�(γ)

)
f (γ)− (

1 −Λ(γ)
)]

x(γ)dγ(29)

+
∫ γL

γ

(γ − γL)x(γ)dΛ(γ)+
∫ γ

γH

(γ − γH)x(γ)dΛ(γ)�

which can be rewritten as

∂L
(
π�;x|Λ) =

∫ γL

γ

[
wπ

(
γ�πf (γL)

)
f (γ)

− κF(γ)− κ(γ − γL)f (γ)
]
x(γ)dγ

+
∫ γ

γH

[
wπ

(
γ�πf (γH)

)
f (γ)+ κ

(
1 − F(γ)

)
− κ(γ − γH)f (γ)

]
x(γ)dγ�

Integrating by parts, we have53

∂L
(
π�;x|Λ) =

[∫ γL

γ

[
wπ

(
γ�πf (γL)

)
f (γ)− κF(γ)

− κ(γ − γL)f (γ)
]
dγ

]
x(γL)

−
∫ γL

γ

[∫ γ

γ

[
wπ

(
γ̃�πf (γL)

)
f (γ̃)− κF(γ̃)

− κ(γ̃ − γL)f (γ̃)
]
dγ̃

]
dx(γ)

52 Existence of the Gateaux differential follows from Lemma A.1 of Amador, Werning, and
Angeletos (2006). To be able to use that lemma, first note that the Lagrangian (28) is written
as the sum of three terms. The middle one is linear in π , so we can obtain directly the Gateaux
differential. The remaining two terms are then integrals with integrands that are concave and
satisfy the hypothesis of Lemma A.1. Existence of the integrals in the right hand side of equation
(29) follows from Λ being of bounded variation and x being monotone in γ, and thus integrable,
together with wπ(γ�π

�(γ)) bounded and continuous in γ. The continuity of wπ follows from
Assumption 1 and that π� is continuous. It follows also that wπ is bounded as it is a continuous
real function in a compact set.

53Integration by parts works, as one of the functions involved in each case is continuous. Exis-
tence of the integrals follows from wπ(γ�π

�(γ)) being bounded and continuous in γ, as stated in
footnote 52.
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+
[∫ γ

γH

[
wπ

(
γ�πf (γH)

)
f (γ)+ κ

(
1 − F(γ)

)
− κ(γ − γH)f (γ)

]
dγ

]
x(γH)

+
∫ γ

γH

[∫ γ

γ

[
wπ

(
γ̃�πf (γH)

)
f (γ̃)+ κ

(
1 − F(γ̃)

)
− κ(γ̃ − γH)f (γ̃)

]
dγ̃

]
dx(γ)�

We require that this differential be nonpositive for all nondecreasing x and
zero when evaluated at x = π�. Note that for γ ∈ [γ�γL] ∪ [γH�γ], if x = π�,
then dx(γ)= 0. So we need that∫ γ

γ

[
wπ

(
γ̃�πf (γL)

)
f (γ̃)− κF(γ̃)− κ(γ̃ − γL)f (γ̃)

]
dγ̃ ≥ 0

∀γ ∈ [γ�γL] with equality at γL�∫ γ

γ

[
wπ

(
γ̃�πf (γH)

)
f (γ̃)+ κ

(
1 − F(γ̃)

) − κ(γ̃ − γH)f (γ̃)
]
dγ̃ ≤ 0

∀γ ∈ [γH�γ] with equality at γH�

Note that the above equations are implied by∫ γ

γ

[
wπ

(
γ̃�πf (γL)

) f (γ̃)
F(γ)

]
dγ̃ ≥ κ(γ − γL)

∀γ ∈ [γ�γL] with equality at γL�∫ γ

γ

[
wπ

(
γ̃�πf (γH)

) f (γ̃)

1 − F(γ)

]
dγ̃ ≤ κ(γ − γH)

∀γ ∈ [γH�γ] with equality at γH�

if γH or γL is interior, respectively. Thus if γH or γL is interior, then (c2) or
(c3) is sufficient for the satisfaction of the respective above equation. If not,
that is, if γL = γ or γH = γ, then the respective above equation is automatically
satisfied.

Hence, using concavity of Lagrangian plus Lemma A.2 in Amador, Werning,
and Angeletos (2006), we have shown that the proposed allocation π� maxi-
mizes the Lagrangian (27) given the multipliers.
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Applying Luenberger’s Sufficiency Theorem

We now apply Theorem 1 in Appendix B. To apply this theorem, we
set (i) x0 ≡ π�; (ii) X ≡ {π|π :Γ → Π}; (iii) f to be given by the neg-
ative of the objective function,

∫
Γ
w(γ�π(γ))dF(γ), as a function of π;

(iv) Z ≡ {(z1� z2)|z1 :Γ → R and z2 :Γ → R with z1� z2 integrable}; (v) Ω ≡ Φ;
(vi) P ≡ {(z1� z2)|(z1� z2) ∈ Z such that z1(γ) ≥ 0 and z2(γ) ≥ 0 for all γ ∈ Γ };
(vii) G to be the mapping from Φ to Z given by the left hand sides of inequal-
ities (25) and (26); (viii) the linear operator T is given by

T
(
(z1� z2)

) ≡
∫
Γ

z1(γ)dΛ1(γ)+
∫
Γ

z2(γ)dΛ2(γ)�

and Λ1 and Λ2 being nondecreasing functions implies that T(z) ≥ 0 for z ∈ P .
We have that

T
(
G(x0)

) ≡
∫
Γ

(∫ γ

γ

π�
(
γ′)dγ′ +U − γπ�(γ)

− b
(
π�(γ)

))
d
(
Λ1(γ)−Λ2(γ)

) = 0�

where the last equality follows from the fact that there is no money burned.
We have found conditions under which the proposed allocation, π�, mini-
mizes f (x) + T(G(x)) for x ∈ Ω. Given that T(G(x0)) = 0, then the condi-
tions of Theorem 1 hold, and it follows that π� solves minx∈Ω f (x) subject to
−G(x) ∈ P , which is Problem (P) with the additional constraint (1).

Proof of Part (b) of Proposition 1

Using the integral form for the incentive constraints, Problem (P) be-
comes

max{
π :Γ → Π�

t : Γ → R

}
∫ (

w
(
γ�π(γ)

) − t(γ)
)
dF(γ) subject to:

γπ(γ)+ b
(
π(γ)

) − t(γ)=
∫ γ

γ

π(γ̃)dγ̃ +U for all γ ∈ Γ�

π nondecreasing, and t(γ)≥ 0 for all γ ∈ Γ�

where U ≡ γπ(γ)+ b(π(γ))− t(γ).
Solving the integral equation for t(γ) and substituting into both the objec-

tive and the nonnegativity constraint, we get the following equivalent prob-
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lem:

max{
π : Γ → Π�

t(γ) ≥ 0

}
∫ (

v
(
γ�π(γ)

)
f (γ)+ (

1 − F(γ)
)
π(γ)

)
dγ +U subject to:(P2′)

γπ(γ)+ b
(
π(γ)

) −
∫ γ

γ

π(γ̃)dγ̃ −U ≥ 0 for all γ ∈ Γ�(30)

π nondecreasing,(31)

where v is defined such that v(γ�π(γ))≡w(γ�π(γ))− b(π(γ))− γπ(γ).
Note that once we have solved this program for π(γ) and t(γ), we can re-

cover t(γ) via

t(γ)= γπ(γ)+ b
(
π(γ)

) −
∫ γ

γ

π(γ̃)dγ̃ −U�

Let the associated Lagrangian be defined as

L
(
π� t(γ)|Λ̃)
≡

∫
γ∈Γ

(
v
(
γ�π(γ)

)
f (γ)+ (

1 − F(γ)
)
π(γ)

)
dγ +U

−
∫
γ∈Γ

(∫ γ

γ

π
(
γ′)dγ′ +U − γπ(γ)− b

(
π(γ)

))
dΛ̃(γ)�

where Λ̃ is the (cumulative) Lagrange multiplier associated with equation (30).
It is required that Λ̃ be nondecreasing.

Integrating by parts, and setting Λ̃(γ) = 1 without loss of generality, we get

L
(
π� t(γ)|Λ̃) ≡

∫
γ∈Γ

(
v
(
γ�π(γ)

)
f (γ)+ (

Λ̃(γ)− F(γ)
)
π(γ)

)
dγ(32)

+
∫
γ∈Γ

(
γπ(γ)+ b

(
π(γ)

))
dΛ̃(γ)+ Λ̃(γ)U�

A Proposed Multiplier

Our proposed multiplier in this case is

Λ̃(γ)=
⎧⎨⎩
(1 − κ)F(γ)+ κ� for γ ∈ [γH�γ],
F(γ)−wπ

(
γ�πf (γ)

)
f (γ)� for γ ∈ (γL�γH),

(1 − κ)F(γ)� for γ ∈ [γ�γL],
where κ is given by definition (3).
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Monotonicity of the Lagrange Multiplier

Now let us show that the Lagrange multiplier is nondecreasing. In the flex-
ibility region, γ ∈ (γL�γH), the Lagrange multiplier can be written as Λ̃(γ) =
κF(γ) − wπ(γ�πf (γ))f (γ) + (1 − κ)F(γ). Under (c1) and the definition of
κ in equation (3), which ensures κ ≤ 1, this is the sum of two nondecreasing
functions and hence is nondecreasing. In the interior of the pooling regions,
γ < γL or γ > γH , the Lagrange multiplier is also nondecreasing since κ ≤ 1, by
equation (3). We now need to check that at the jumps, {γL�γH}, the Lagrange
multiplier is nondecreasing. At γL, we have that the Lagrange multiplier has a
jump of size

κF(γL)−wπ

(
γL�πf (γL)

)
f (γL)�

We need to consider two cases. If γL = γ, then the jump is equal to
−wπ(γ�πf (γ))f (γ), which is nonnegative by (c3′). If γL > γ, then condition
(c3) holds at γL with equality. Taking the derivative of that condition, it must
then be that

κ−wπ

(
γL�πf (γL)

)
f (γL)/F(γL)≥ 0�

which implies that the jump in the multiplier is nonnegative. A similar argu-
ment, using (c2) and (c2′), shows that the Lagrange multiplier has a nonnega-
tive jump at γH , and so we have shown that the proposed Lagrange multiplier
is nondecreasing.

Concavity of the Lagrangian

We first check that the Lagrangian is concave in the allocation at the pro-
posed multiplier. Note that we can write the Lagrangian as

L
(
π� t(γ)|Λ̃) ≡

∫
γ∈Γ

{[
w

(
γ�π(γ)

) − κγπ(γ)− κb
(
π(γ)

)]
f (γ)

+ (
Λ̃(γ)− F(γ)

)
π(γ)

}
dγ

+
∫
γ∈Γ

(
γπ(γ)+ b

(
π(γ)

))
d
(
(κ− 1)F(γ)+ Λ̃(γ)

)
�

where we use that Λ̃(γ) = 0. By the definition of κ, we have that w(γ�π) −
κb(π) is concave in π. To see this, note that the second derivative is
wππ(γ�π) − κb′′(π) = b′′(π)(wππ(γ�π)/b

′′(π) −κ). The last term in brack-
ets is nonnegative given our definition of κ, and hence the function w(γ�π)−
κb(π) is concave in π. Finally, we note that, from (c1) and the fact that jumps
in the multiplier are nonnegative, it follows that (κ− 1)F(γ)+ Λ̃(γ) is nonde-
creasing, which is needed in the second integral to guarantee that the concavity
of b is not reversed.
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Maximizing the Lagrangian

That the Lagrangian is maximized at the proposed allocation is similar to the
argument used in our proof for part (a) of Proposition 1 (the no money burning
case). To see this, first note that t(γ) does not appear in the Lagrangian, given
the proposed Lagrange multiplier. This implies that we can restrict attention
to maximizing the Lagrangian over just π(γ) for γ ∈ Γ . Now, let Λ(γ) = 1 −
F(γ)+ Λ̃(γ). Then the Lagrangian can be rewritten as

L
(
π� t(γ)|Λ) ≡

∫
γ∈Γ

{[
w

(
γ�π(γ)

) − κ
(
γπ(γ)+ b

(
π(γ)

))]
f (γ)

− (
1 −Λ(γ)

)
π(γ)

}
dγ

+
∫
γ∈Γ

(
γπ(γ)+ b

(
π(γ)

))
d
(
κF(γ)+Λ(γ)

)
�

which is equivalent to the Lagrangian in the proof of part (a) of Proposition 1
with κ given by equation (3), and where Λ is the Lagrange multiplier as defined
in that section. The same argument used there shows that, given the conditions
of the proposition, which are written in terms of κ given by equation (3), the
Lagrangian is maximized at an interval allocation.

Applying Luenberger’s Sufficiency Theorem

We now apply Theorem 1. To apply this theorem, we set (i) x0 ≡ (π��0);
(ii) f to be given by the negative of the objective function, f ≡ − ∫

Γ
(v(γ�

π(γ))f (γ) + (1 − F(γ))π(γ))dγ − U ; (iii) X ≡ {π� t|t ∈ R+ and π :Γ →
Π}; (iv) Z ≡ {z|z :Γ → R with z integrable}; (v) Ω ≡ {π� t|t ∈ R+�π :Γ →
Π; and π nondecreasing}; (vi) P ≡ {z|z ∈ Z such that z(γ) ≥ 0 for all γ ∈ Γ };
(vii) G to be the mapping from Ω to Z given by the negative of the left hand
side of inequality (30); (viii) T(z) be the linear mapping

T(z)=
∫
Γ

z(γ)dΛ̃(γ)�

where T(z) ≥ 0 for z ∈ P follows from Λ̃ nondecreasing. We have that

T
(
G(x0)

) ≡
∫
Γ

(∫ γ

γ

π�(γ̃) dγ̃ +U − γπ�(γ)− b
(
π�(γ)

))
dΛ̃(γ)

= 0�

which follows from t(γ) = 0 for all γ. We have found conditions under which
the proposed allocation, x0 = (π��0), minimizes f (x) + T(G(x)) for x ∈ Ω.
Given that T(G(x0)) = 0, the conditions of Theorem 1 hold, and it follows
that (π��0) solves minx∈Ω f (x) subject to −G(x) ∈ P , which is Problem (P).

Q.E.D.
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APPENDIX D: PROOF OF PROPOSITION 2

The proof of this proposition will proceed through a series of lemmas.
We first show that, in the case with money burning, if κ = 1, then the condi-

tions in Proposition 1 are also necessary.

LEMMA 4—Necessity With Money Burning When κ = 1: Let κ be given by
equation (3). If κ = 1� then conditions (c1), (c2), (c2′), (c3), and (c3′) are neces-
sary for an interval allocation with bounds γL, γH to solve Problem (P).

PROOF: The proof here follows the proof of Proposition 4, the necessity
result, in Amador, Werning, and Angeletos (2006). We proceed to use The-
orem 1 (a necessity theorem) in Luenberger (1969, p. 217). Let (i) f to be
given by the negative of the objective function, f ≡ − ∫

Γ
(v(γ�π(γ))f (γ) +

(1 − F(γ))π(γ))dγ − U ; (ii) X ≡ {π� t|t ∈ R+ and π :Γ → Π}; (iii) Z ≡
{z|z :Γ → R and z continuous} with the norm ‖z‖ = sup |z(γ)|; (iv) Ω ≡
{π� t|t ∈ R+�π :Γ → Π� nondecreasing and continuous}; (v) P ≡ {z|z ∈
Z such that z(γ) ≥ 0 for all γ ∈ Γ }; (vi) G to be the mapping from Ω to Z
given by the negative of the left hand side of inequality (30). Note that we are
restricting the choice set to be the set of nondecreasing and continuous func-
tions π. This is because we are looking for necessary conditions for the optimal
allocation to be an interval, which is continuous.

Note that, given that κ = 1 (by the hypothesis of the proposition), f is con-
vex. Note as well that G is convex, Ω is convex, P contains an interior point
(e.g., z(γ) = 1 for all γ ∈ Γ ), and that the positive dual of Z is isomorphic to
the space of nondecreasing functions on Γ by the Riesz representation theo-
rem (see Luenberger (1969, chapter 5, p. 113)). Note as well that if (π� t) is
optimal and lies in Ω, then it must be optimal within Ω. To see that there ex-
ists an interior point to the constraint set, just consider the allocation x1 that
bunches every type at some π1 and burns a strictly positive amount. That al-
location is in Ω and generates a function G(x1) that is in the interior of the
negative cone −P . Given that the proposed allocation is continuous, it follows
that the hypothesis of Theorem 1 of Luenberger (1969, p. 217) holds and there
exists a nondecreasing function Λ0, such that the Lagrangian, L(π� t|Λ0), is
maximized at (π�� t�(γ)) within Ω.54 Without loss of generality, we normalize
Λ0(γ)= 1.

In a similar fashion as in the proof of part (a) of Proposition 1, we can now
use Lemmas A.1 and A.2 of Amador, Werning, and Angeletos (2006), and
argue that if the Lagrangian is maximized at some (π�� t�(γ)) ∈Ω, then it must

54Note that the Lagrangian in our case corresponds to the negative of the Lagrangian as de-
fined in Luenberger (1969).
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be the case that

∂L
(
π�� t�(γ);π�� t�(γ)|Λ0

) = 0�

∂L
(
π�� t�(γ);x� y|Λ0

) ≤ 0�

for all (x� y) ∈ Ω, and where, as before, the derivative is in terms of Gateaux
differentials.

Taking the Gateaux differential of the Lagrangian in (32), we get55

∂L
(
π�� t�(γ);x� y|Λ0

)
=

∫
γ∈Γ

(
vπ

(
γ�π�(γ)

)
f (γ)+ (

Λ0(γ)− F(γ)
))

x(γ)dγ

+
∫ γL

γ

(γ − γL)x(γ)dΛ0(γ)+
∫ γ

γH

(γ − γH)x(γ)dΛ0(γ)

+Λ0(γ)
(
(γ − γL)x(γ)− y

)
�

Let us define g to be such that:

g(γ) ≡
∫ γ

γ

(
vπ

(
γ̃�π�(γ̃)

)
f (γ̃)+ (

Λ0(γ̃)− F(γ̃)
))
dγ̃

+
∫ γ

γ

[
I(γ̃ < γL)(γ̃ − γL)+ I(γ̃ > γH)(γ̃ − γH)

]
dΛ0(γ̃)�

Integrating by parts the derivative above (which can be done given that x is
continuous), it follows that

∂L
(
π�� t�(γ);x� y|Λ0

) = [
g(γ)+Λ0(γ)(γ − γL)

]
x(γ)

+
∫ γ

γ

g(γ)dx(γ)−Λ0(γ)y�

The first-order conditions require the above to be nonpositive for all nonde-
creasing and nonnegative functions x and nonnegative y , and hence:

g(γ)+Λ0(γ)(γ − γL)≤ 0; g(γ) ≤ 0; and Λ0(γ) ≥ 0�

Using that ∂L(π�� t�(γ);π�� t�(γ)|Λ0) = 0, it follows that (i) g(γ) = 0 for all
γ ∈ [γL�γH]; (ii) g(γ)+Λ0(γ)(γ − γL)= 0. From (i), we get that

Λ0(γ)= F(γ)− vπ
(
γ�π�(γ)

)
f (γ)�(33)

55See footnote 52 for existence of the Gateaux differential.
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for γ ∈ [γL�γH].56 And using (ii) as well:∫ γL

γ

(
vπ

(
γ̃�π�(γ̃)

)
f (γ̃)+ (

Λ0(γ̃)− F(γ̃)
))
dγ̃(34)

+
∫ γL

γ

(γ̃ − γL)dΛ0(γ̃)+Λ0(γ)(γ − γL)= 0�

From g(γ) ≤ 0 for γ ∈ [γ�γL)∪(γH�γ] and g(γ) = 0 for γ ∈ [γL�γH], it follows
that ∫ γ

γ

(
vπ

(
γ̃�π�(γ̃)

)
f (γ̃)+ (

Λ0(γ̃)− F(γ̃)
))
dγ̃(35)

+
∫ γ

γ

(γ̃ − γH)dΛ0(γ̃) ≤ 0 for γ ∈ (γH�γ]�∫ γL

γ

(
vπ

(
γ̃�π�(γ̃)

)
f (γ̃)+ (

Λ0(γ̃)− F(γ̃)
))
dγ̃(36)

+
∫ γL

γ

(γ̃ − γL)dΛ0(γ̃)≤ 0 for γ ∈ [γ�γL)�

Now note that
∫ γ

γ
Λ0(γ̃)dγ̃ =Λ0(γ̃)(γ̃ − γ)|γγ − ∫ γ

γ
(γ̃ − γ)dΛ0(γ̃) = (γ − γ)−∫ γ

γ
(γ̃ − γ)dΛ0(γ̃). And from the first of the two inequalities above, we get

that ∫ γ

γ

(
vπ

(
γ̃�πf (γH)

)
f (γ̃)+ 1 − F(γ̃)

)
dγ̃ + (γ − γH)

(
1 −Λ0(γ)

) ≤ 0

for γ ∈ (γH�γ]�

And thus, the best chance we have for the above inequality to hold, given
that Λ0 is nondecreasing and Λ0(γ) = 1, is that Λ0(γ) = 1 for all γ ∈ (γH�γ).
Hence, a necessary condition is that∫ γ

γ

(
vπ

(
γ̃�πf (γH)

)
f (γ̃)+ 1 − F(γ̃)

)
dγ̃ ≤ 0 for γ ∈ (γH�γ]�(37)

56For all γ ∈ [γL�γH], we note that g(γ) = ∫ γH
γ

h(γ)dγ for some integrable function h. From
properties of absolute continuity, it follows that g(γ) = 0 for all γ ∈ [γL�γH ] only if h(γ) = 0
almost everywhere in [γL�γH]. For simplicity’s sake, we do not write the “a.e.” conditioning in
what follows, although the reader should keep it in mind.
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Now subtracting equation (36) from equation (34), we get∫ γ

γ

(
vπ

(
γ̃�π�(γ̃)

)
f (γ̃)− F(γ̃)

)
dγ̃ +Λ0(γ)(γ − γL)≥ 0

for γ ∈ [γ�γL)�

The best chance of satisfying this equation is when Λ0(γ) = 0 for all γ < γL

(given that Λ0(γ) is nondecreasing and we have shown above that Λ0(γ) ≥ 0).
Then a necessary condition for optimality is that∫ γ

γ

(
vπ

(
γ̃�πf (γL)

)
f (γ̃)− F(γ̃)

)
dγ̃ ≥ 0 for γ ∈ [γ�γL)�(38)

Note that (c1) follows from (33) and the restriction that Λ0 must be non-
decreasing. Condition (c2) follows from (37), where the equality restriction
follows from Lemma 1. Condition (c2′) follows also from Lemma 1. Con-
dition (c3) follows from (38), where the equality restriction follows from
Lemma 1. Condition (c3′) follows from Lemma 1. Hence, when κ = 1,
the sufficient conditions (c1), (c2), (c2′), (c3), and (c3′) are also neces-
sary. Q.E.D.

Now we proceed to obtain another set of necessary conditions. Suppose that,
within the flexibility region, we were to remove the prescribed allocations for
some types x to x+ε. This is a feasible change to the allocation and is incentive
compatible as follows: there is a type γ(ε) that is now indifferent between the
allocations for types x and x+ ε, and γ(ε) satisfies

γ(ε)= −b(πf (x+ ε))− b(πf (x))

πf (x+ ε)−πf(x)
�(39)

All types between x and γ(ε) now choose the allocation for type x, while all
types between γ(ε) and x+ ε choose the allocation for type x+ ε.

The following lemma characterizes some useful properties of the γ function.

LEMMA 5: Let γ(·) be defined as in (39). Then, (i) γ(0)= x; (ii) γ′(0)= 1/2;

and (iii) γ′′(0)= 1
6

π′′
f
(x)

π′
f
(x)

.

PROOF: Recall also that, in the flexible allocation, we have that b′(πf (x)) =
−x. The first point follows from taking the limit of (39). The second follows
from

γ′(ε)= x+ ε− γ(ε)

πf (x+ ε)−πf(x)
π ′

f (x+ ε)�
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and taking the limit. Using L’Hôpital’s rule, we get γ′(0) = −γ′(0) + 1 and so
γ′(0)= 1/2. Taking another derivative, we get that

γ′′(ε)= 1 − 2γ′(ε)
πf (x+ ε)−πf(x)

π ′
f (x+ ε)+ γ′(ε)

π ′′
f (x+ ε)

π ′
f (x+ ε)

�

And taking limits as ε → 0, we get γ′′(0) = −2γ′′(0) + 1
2

π′′
f
(x)

π′
f
(x)

, which delivers

that γ′′(0)= 1
6

π′′
f
(x)

π′
f
(x)

. Q.E.D.

We can now compute the effect on welfare of removing the allocations pre-
scribed for types x to x+ ε: all types between x and γ(ε) choose πf(x) in the
new allocation, while all types between γ(ε) and x+ ε choose πf(x+ ε). The
change in welfare, �W , is given by the following equation:

�W (ε) =
∫ γ(ε)

x

w
(
γ�πf (x)

)
dF(γ)+

∫ x+ε

γ(ε)

w
(
γ�πf (x+ ε)

)
dF(γ)(40)

−
∫ x+ε

x

w
(
γ�πf (γ)

)
dF(γ)�

Then we can prove the following result.

LEMMA 6: Let f be differentiable, and �W (·) be defined as in (40). Then
(i) �W (0) = 0; (ii) �W ′(0) = 0; (iii) �W ′′(0) = 0; and (iv) �W ′′′(0) =
π′
f
(x)

4 [ d
dx
wπ(x�πf (x))f (x))] + 1

4π
′
f (x)f (x)wππ(x�πf (x))π

′
f (x).

PROOF: Taking the first derivative with respect to ε, we get that

�W ′(ε) = (
w

(
γ(ε)�πf (x)

) −w
(
γ(ε)�πf (x+ ε)

))
f
(
γ(ε)

)
γ′(ε)

+
∫ x+ε

γ(ε)

wπ

(
γ�πf (x+ ε)

)
π ′

f (x+ ε)dF(γ)�

Thus, �W ′(0)= 0 since γ(0)= x by Lemma 5. Taking one more derivative, we
get

�W ′′(ε)

=
[
d

dε

(
f
(
γ(ε)

)
γ′(ε)

)](
w

(
γ(ε)�πf (x)

) −w
(
γ(ε)�πf (x+ ε)

))
+ f

(
γ(ε)

)(
γ′(ε)

)2[
wγ

(
γ(ε)�πf (x)

) −wγ

(
γ(ε)�πf (x+ ε)

)]
− 2f

(
γ(ε)

)
γ′(ε)wπ

(
γ(ε)�πf (x+ ε)

)
π ′

f (x+ ε)
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+wπ

(
x+ ε�πf (x+ ε)

)
π ′

f (x+ ε)f (x+ ε)

+
∫ x+ε

γ(ε)

[
wππ

(
γ�πf (x+ ε)

)(
π ′

f (x+ ε)
)2

+wπ

(
γ�πf (x+ ε)

)
π ′′

f (x+ ε)
]
dF(γ)�

from where, using γ(0) = x and γ′(0) = 1/2 by Lemma 5, it follows that
�W ′′(0)= 0.

Taking another derivative, and using our knowledge of γ(ε) through
Lemma 5, we can get, after some algebra, that

�W ′′′(0) = 1
4
wπ

(
x�πf (x)

)
π ′

f (x)f
′(x)+ 1

4
wπγ

(
x�πf (x)

)
π ′

f (x)f (x)

+ 1
2
wππ

(
x�πf (x)

)(
π ′

f (x)
)2
f (x)�

which delivers the result. Q.E.D.

A necessary condition for optimality is that �W ′′′(0) ≤ 0. Now, using that
π ′

f (x)= −1/bππ(πf (x)) and that π ′
f (γ) > 0, the following has been proved.

LEMMA 7—Necessity in the Flexible Region: Let f be differentiable. Then,
an interval allocation with bounds γL�γH is optimal only if(

wππ(γ�πf (γ))

b′′(πf (γ))

)
f (γ)− d

dγ

[
wπ

(
γ�πf (γ)

)
f (γ)

] ≥ 0�

for all γ ∈ [γL�γH].
Now we proceed to obtain a necessary condition that will apply at the pooling

regions.

LEMMA 8—Necessity in the Pooling Region: Let g(π0|π) ≡ b(π)−b(π0)

π0−π
. An

interval allocation with bounds γL�γH is optimal only if:
(a) if γH < γ, then∫ γ

g(π0|πf (γH))

(
w(γ̃�π0)−w(γ̃�πf (γH))

π0 −πf(γH)

)
f (γ̃)dγ̃ ≤ 0�(41)

for all π0 ∈ [πf(γH)�πf (γ)], and with equality at π0 = πf(γH),
(b) if γH = γ, wπ(γ�πf (γ))≥ 0,
(c) if γL > γ,∫ g(π0|πf (γL))

γ

(
w(γ̃�π0)−w(γ̃�πf (γL))

π0 −πf(γL)

)
f (γ̃)dγ̃ ≥ 0�(42)
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for all π0 ∈ [πf(γ)�πf (γL)], and with equality at π0 = πf(γL),
(d) if γL = γ, wπ(γ�πf (γ)) ≤ 0.

PROOF: Let us just prove (a) and (b), as (c) and (d) follow a similar ar-
gument. That condition (b) is a necessary condition follows directly from
Lemma 1. For condition (a), the fact that the condition must hold with equal-
ity at γH follows immediately from Lemma 1, as the allocation in the general
case must be optimal as well when restricted to the class of interval allocations.
To see this, note that when π0 = πf(γH), we have that g(πf (γH)|πf(γH)) =
−b′(πf (γH)) = γH , and the term inside the brackets in the integral in condi-
tion (a) then becomes wπ(γ̃�πf (γH)); and thus the condition is the same as
in Lemma 1. To prove that the inequality in condition (a) must hold, consider
the perturbation that introduces the choice π0 (with no money burned) into
the allocation. All agents between γH and γ0 ≡ g(π0|πf(γH)) will remain with
their old choice, πf(γH), while all agents between γ0 and γ will now choose
the new choice π0. (This follows from noticing that type γ0 remains indiffer-
ent between the two.) The effect on welfare of this perturbation is equal to
the left hand side of inequality (41), multiplied by π0 −πf(γH), and hence the
inequality must hold or we would have found an improvement. Q.E.D.

Using the necessity results in Lemmas 4, 7, and 8, we can show that there is a
family of utility functions for which (c1), (c2), (c2′), (c3), and (c3′) are necessary
for the optimality of an interval allocation. The proof of Proposition 2, which
follows below, shows this.

Proof of Part (a) of Proposition 2 (The No Money Burning Case)

For this case, we know that A= κ. We next note that the following inequali-
ties are each equivalent to the sufficient condition (c2):∫ γ

γ

wπ

(
γ̃�πf (γH)

) f (γ̃)

1 − F(γ)
dγ̃ ≤ (γ − γH)A�

∫ γ

γ

(
wπ

(
γ̃�πf (γH)

) −A(γ − γH)
) f (γ̃)

1 − F(γ)
dγ̃ ≤ 0�

∫ γ

γ

wπ

(
γ̃�πf (γ)

)
f (γ̃)dγ̃ ≤ 0�

which should hold for all γ ∈ [γH�γ] and with equality at γH . Note that we have
used that wπ(γ̃�πf (γH)) − A(γ − γH) = wπ(γ̃�πf (γ)), given our assumption
about w and using that b′(πf (γ))= −γ.

The necessary condition (41) of Lemma 8 is now

A

∫ γ

γ0

((
b(π0)− b(πf (γH))

π0 −πf(γH)

)
+C(γ̃)

)
f (γ̃)dγ̃ ≤ 0�
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which should hold for all π0 ∈ [πf(γH)�πf (γ)] and with equality at π0 =
πf(γH), where γ0 = g(π0|πf(γH)). Using the definition of g, we have that the
above is equivalent to

A

∫ γ

γ0

(−γ0 +C(γ̃)
)
f (γ̃)dγ̃ ≤ 0�

Using that b′(πf (γ0)) = −γ0, and thus that wπ(γ̃�πf (γ0)) = A(−γ0 + C(γ̃)),
it follows that this is the same as the sufficient condition (c2) as represented
above. Note that (c2′) is the same as condition (b) of Lemma 8.

A similar argument shows that (c3) and (c3′) are equivalent to (c) and (d)
of Lemma 8. Finally, under differentiability of f , the necessary condition in
Lemma 7 is equivalent to condition (c1) using the preferences specified above.
Taken together, the above shows that the conditions (c1), (c2), (c2′), (c3), and
(c3′) are also necessary.

Proof of Part (b) of Proposition 2 (The Money Burning Case)

There are two cases to consider. The first case, where A ≥ 1, implies that
κ = 1, and this is already covered by our Lemma 4. For the second case, where
A< 1, the result is the same as for part (a) above, as A = κ. Q.E.D.

APPENDIX E: PROOF OF PROPOSITION 3

Let d(x) ≡ E[γ|γ > x] − x= ∫ γ

x

1−F(γ)

1−F(x)
dγ. The following lemma is useful.

LEMMA 9: If f is nondecreasing, then g(x) ≡ d(x)

1−F(x)
is such that g(x) ≤ 1

2f (x) .

PROOF: Note that

g′(x) = d′(x)
1 − F(x)

+ d(x)

1 − F(x)

f (x)

1 − F(x)

= g(x)f (x)− 1
1 − F(x)

+ g(x)f (x)

1 − F(x)
= 2g(x)f (x)− 1

1 − F(x)
�

where we used that d′(x) = −1 + d(x) f(x)

1−F(x)
. We also know that limx→γ g(x) =

1
2f (γ) (which follows from applying L’Hôpital’s rule on d(x)/(1 − F(x))). From
the ODE, it follows then that if g(x0) >

1
2f (x0)

for some x0, then g′(x0) > 0, and
given that f (x) is nondecreasing, this implies that g(x) > 1

2f (x0)
≥ 1

2f (γ) for all
x > x0, which is a contradiction of the limit condition. Q.E.D.

Let us now prove Proposition 3. Let H(γ) = κF(γ) − wπ(γ�πf (γ))f (γ).
Note that condition (c1) is equivalent to requiring that H be nondecreasing
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in [γL�γH]. The hypothesis of the proposition implies that wπ(γ�πf (γ)) =
v′(πf (γ)). Using integration by parts, we can rewrite H as

H(γ) = κF(γ)−
∫ γ

γ

v′(πf(γ̃)
)
df(γ̃)

−
∫ γ

γ

f (γ̃)v′′(πf(γ̃)
)
π ′

f (γ̃) dγ̃ − v′(πf(γ)
)
f (γ)

=
∫ γ

γ

f (γ̃)

(
κ+ v′′(πf (γ̃))

b′′(πf (γ̃))

)
dγ̃

+
∫ γ

γ

(−v′(πf(γ̃)
))
df(γ̃)− v′(πf(γ)

)
f (γ)�

where we used that π ′
f (γ) = −1/b′′(πf (γ)). By the hypothesis that κ ≥ 1/2, it

follows that

v′′(πf (γ̃))+ b′′(πf (γ̃))

b′′(πf (γ̃))
≥ κ ≥ 1

2
⇒ v′′(πf (γ̃))

b′′(πf (γ̃))
+ κ ≥ 2κ− 1 ≥ 0�

And thus the first integral above is increasing in γ. The second integral is also
increasing in γ as −v′ ≥ 0 and f is nondecreasing. It follows that H is the sum
of a constant plus two nondecreasing functions in γ, so H is also nondecreas-
ing. Hence condition (c1) holds.

Condition (c3′) holds, given that wπ(γ�πf (γ)) = v′(πf (γ)) ≤ 0 by the hy-
pothesis of the proposition.

Finally, let G(γc)= ∫ γ

γc
wπ(γ�πf (γH))

f(γ)

1−F(γc)
dγ−(γc −γH)κ. Condition (c2)

requires that G(γc) ≤ 0 for all γc > γH and G(γH) = 0. Now note that, using
(4), G can be written as

G
(
γc

) = E
[
γ|γ > γc

] − E[γ|γ > γH] − κ
(
γc − γH

)
�(43)

Hence, G(γH)= 0. Also, we can get that

G′(γc
) = d

dγc

(
E
[
γ|γ > γc

]) − κ

= d′(γc
) + 1 − κ= d(γc)f (γc)

1 − F(γc)
− κ≤ 1

2
− κ�

where the last inequality follows from f nondecreasing and Lemma 9. Letting
κ ≥ 1

2 implies that G′(γc) ≤ 0 for all γc > γH , which delivers that G(γc)≤ 0 for
all γc > γH . And hence condition (c2) holds.

Given that Assumption 1 holds by hypothesis, we can then invoke Proposi-
tion 1 to complete the proof of Proposition 3. Q.E.D.
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APPENDIX F: PROOF OF COROLLARY 2

Part (i) of the corollary was proved in the text.
To prove part (ii), the following lemma will be used.

LEMMA 10: In the linear-quadratic case, if the function defined by κF(γ) −
v′(πf (γ))f (γ) for all γ ∈ Γ is nondecreasing, then conditions (c1) and (c2) are
satisfied.

PROOF: Let X(γ) = (1 − F(γ))G(γ), where G is as in (43). Then we can
show that

X ′(γ)= −κ+ κF(γ)− [
v′(πf(γH)

) + (1 − κ)(γ − γH)
]
f (γ)�

In our linear-quadratic case, we have that v′(πf (γ))= v′(πf (γH))+(1−κ)(γ−
γH)� with κ = 2/3, and thus

X ′(γ)= −κ+ κF(γ)− v′(πf(γ)
)
f (γ)�

which is nondecreasing by the hypothesis of the lemma. This implies then
that X(γ) is a convex function of γ. Note that X(γ) = 0 and X ′(γ) =
−v′(πf (γ))f (γ) > 0� It then follows that X(γ) has at most another 0 for γ < γ�
which corresponds to γH� This also implies that X(γ) < 0 for all γ ∈ (γH�γ)
and thus G(γ) < 0 as well, which proves that condition (c2) holds. The hypoth-
esis of the lemma directly implies condition (c1). Q.E.D.

To prove Corollary 2, we recall that E[γ]> [7 + 8γ]/12 ensures that γH is in-
terior. We thus just need to show that κF(γ)−v′(πf (γ))f (γ) is nondecreasing
in γ ∈ Γ and invoke Lemma 10. Assuming differentiability of f , and using that
κ = 2/3 and that v′′/b′′ = −1/3, we get that κF(γ) − v′(πf (γ))f (γ) is nonde-
creasing in γ if

2
3
f (γ)+ v′′(πf (γ))

b′′(πf (γ))
f (γ)− v′(πf(γ)

)
f ′(γ)≥ 0�

or equivalently, 1
3f (γ) − v′(πf (γ))f

′(γ) ≥ 0. Substituting v′(πf (γ)) =
− 1

3 [ 7
4 − γ]� we get the condition of part (ii) of Corollary 2. Q.E.D.

APPENDIX G: AN EXAMPLE WITH ENDOWMENT AND
LOGARITHMIC UTILITY

In what follows, we develop an endowment example and show that Propo-
sition 3 allows us to characterize the optimal trade agreement. Assume that
u(c) = log(c) and that Q(p) = 1 and Q�(p) = Q∗, where Q∗ > 1. Then we can
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write home consumer surplus plus tariff revenue, foreign welfare, and home
profit, respectively, as

B = −p−p�z − log(p)� V = p�z − log(p�)� Π = p�

where p= (1 + z)−1, p� = (Q∗ − z)−1, and z is the volume of trade.
Note that free trade is z = 1

2(Q∗ − 1). Writing everything in terms of π deliv-
ers

b(π) = −π + π − 1

(Q∗ + 1)π − 1
− log(π)� and

v(π) = 1 −π

(Q∗ + 1)π − 1
− log

(
π

(Q∗ + 1)π − 1

)
�

and where z = 1
π

− 1.
The free trade allocation corresponds to πft = 2

1+Q∗
. Zero trade corresponds

to π = 1. We will restrict attention to a set of admissible π ∈ [πft�1], which is
equivalent to restricting tariffs to be nonnegative.

Note that v′(π)= π−1
π((Q∗+1)π−1)2 ≤ 0, and note as well that

b′′(π) = 1
π2

− 2Q∗(1 +Q∗)

((Q∗ + 1)π − 1)3
�

which is negative for all π ∈ [πft�1] if 1 ≤Q∗ < 1+√
3. Similarly, one can show

that

v′′(π)+ b′′(π) = 2 + (Q∗ + 1)π((Q∗ + 1)π − 4)

π2((Q∗ + 1)π − 1)2
�

from which it follows that w(γ�π) is concave in π for all π ∈ [πft�1] if 1 ≤
Q∗ ≤ 1 + √

2. This last condition guarantees that Assumption 1 is satisfied.
Using the above, the value of κ can be found to be

κ=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2(Q∗ + 1)

7Q∗ − 1
� for 1 ≤Q∗ ≤ 4 + √

41
5

,

−1 − 2Q∗ +Q
2

∗

−2 − 2Q∗ +Q
2

∗
� for

4 + √
41

5
≤Q∗ ≤ 1 + √

2.

Note that κ ≥ 0 for all Q∗ ∈ [1�1+√
2]. Also for Q∗ close to 1, κ ≈ 2/3, which

implies that we can apply Proposition 3, which requires κ ≥ 1/2, and show that
a tariff cap is optimal for distributions with nondecreasing densities when Q∗
is close to 1. Q.E.D.
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APPENDIX H: PROOF OF LEMMA 3

We proceed by showing that each part of Assumption 1 holds.
Part (i) of Assumption 1: This follows from the definition of w.
Part (ii) of Assumption 1: Let us show that v′′(π)+ b′′(π) < 0 for π ∈ (0�1).

To see this, note that

v′′(π)+ b′′(π)

= 1 − (1 −π)(1−2α)/απ(α−1)/α

απ2

≤
1 −

((
1 −

(
1
α

− 1
))(2α−1)/α( 1

α
− 1

)(1−α)/α)−1

απ2
< 0�

where the first inequality follows from the fact that (1 − π)(2α−1)/απ(1−α)/α

achieves a maximum at π = 1−α
α

if 1 > α > 1/2. The second inequality follows
from the fact that 0 < 1 − (1/α − 1) < 1 and 0 < 1/α − 1 < 1 for 1 > α > 1/2,
and thus (1 − ( 1

α
− 1))(2α−1)/α( 1

α
− 1)(1−α)/α < 1 for 1/2 <α< 1.

Part (iii) of Assumption 1: First we show that v′′(π) > 0 for π ∈ (0�1). To
see this, note that v′′(π) = (1 − α)(1 − π)(1−2α)/απ−(1+α)/α/α2 > 0. Now note
that b′′ < 0 when α ∈ (1/2�1) follows immediately from combining v′′ > 0 and
b′′ + v′′ < 0.

Part (iv) of Assumption 1: Given the problem of maximizing b(π)+ γπ, we
know that first-order conditions are sufficient for optimality, as b is concave.
Thus, if b′(π0) = −γ for some π0 ∈ Π, then π0 is a maximizer of b(π) + γπ.
Note that limπ→0 b

′(π) = ∞ and that limπ→1 b
′(π) = − 1

α(1−α)
. Hence if γ <

1
α(1−α)

, then an interior solution exists. Given that γ < 1
α(1−α)

, it follows that this
condition holds and an πf(γ) is interior for all γ.

To prove that π ′
f (γ) > 0, we note that, by the implicit function theorem,

π ′
f (γ)= −1/b′′(πf (γ)) > 0, where the inequality follows from b′′ < 0 in (0�1).
Part (v) of Assumption 1 follows directly from the definition of w, which

completes the proof of the lemma. Q.E.D.
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