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Abstract

Using a dual representation, we show that the Markov equilibria of the one-period-bond Eaton and Gerso-
vitz (1981) incomplete markets sovereign debt model can be represented as a fixed point of a contraction
mapping, providing a new proof of the uniqueness and existence of equilibrium in the benchmark sovereign
debt model. The arguments can be extended to incorporate re-entry probabilities after default when the
shock process is iid. Our representation of the equilibrium bears many similarities to an optimal contracting
problem. We use this to argue that commitment to budget rules has no value to a benevolent government.
We show how the introduction of long-term bonds breaks the link to the constrained planning problem.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

This paper provides a compact characterization of the canonical Eaton and Gersovitz (1981)
model of sovereign debt with one-period defaultable, but otherwise noncontingent, bonds. In
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particular, we show that the Markov equilibrium allocation can be characterized in a single Bell-
man equation that is the fixed point of a contraction mapping. This immediately yields existence
and uniqueness, providing an alternative approach to the recent results of Auclert and Rognlie
(2016).

The fact that the equilibrium is the solution to a Bellman equation also sheds light on the eco-
nomics of the equilibrium. The dynamic programming problem shares many similarities with an
optimal contracting problem between a principal and an agent that is risk averse and lacks com-
mitment. In this sense, the equilibrium allocation has a number of efficiency properties. However,
the contracting problem includes a constraint that reflects market incompleteness, highlighting
the inefficiencies that arise due to the ad-hoc constraints on contracts imposed in the Eaton-
Gersovitz tradition.

The argument has two crucial steps. The first is to consider a dual representation of the equi-
librium. Specifically, we consider maximizing the value of debt subject to delivering a level of
utility to the government. This yields a function B(s, v), which specifies the value of debt when
the exogenous state is s and the “promised utility” of the government is v. The choice variables
in this program are government consumption (or net payments to the lender) in the current state
as well as continuation values in successor periods, v(s’) for all s” in some state space S. The
optimization is subject to the government’s lack of commitment.

At this point, the description is a textbook principal-agent problem with complete markets
and one-sided limited commitment. Hence, the second step of the argument is to ensure that the
optimal allocation is consistent with incomplete markets. In particular, the value of debt next
period cannot vary across state realizations in which the government repays. This requires that
B(s’, v(s")) is invariant across all s’ € S in which the government repays. This is reflected in an
additional constraint that features the representative lender’s value function.

The equilibrium is then characterized by an operator that maps the space of possible debt
values, B, into itself. Differently from a primal approach, our dual representation allows us to
show that the function B is the fixed point of a contraction operator. This immediately implies
uniqueness of the equilibrium and can be used to show its existence. Uniqueness has recently
been established by Auclert and Rognlie (2016), who provide a clever proof of uniqueness based
on a replication argument similar to Bulow and Rogoft (1989b). One contribution of this paper is
to establish uniqueness using standard recursive techniques that are taught in first-year graduate
courses.

As a consequence of the dual-contracting approach, the analysis highlights certain efficiency
properties of the equilibrium. The ability to commit to future debt issuances cannot improve upon
equilibrium allocation, and thus fiscal rules have no value. In particular, aside from the default
decision, there is no loss or gain if the government, as part of the contract, cedes future fiscal
deficit choices to the lenders. There is also no coordination failure that can lead to a sub-optimal
outcome, highlighting the difference between the Eaton-Gersovitz model and the closely related
model of Cole and Kehoe (2000) that does feature self-fulfilling crises. The different timing
assumptions in the Cole-Kehoe model are not consistent with our dual formulation.

The use of the dual-contracting approach and the efficiency properties of short-term bonds
has a precedent in Aguiar et al. (2019b). That paper demonstrates how short-term financing is
efficient in a sovereign debt model where uncertainty affects only the value of default (that is,
the only shocks are those that affect the outside option of the government) and consumption
is deterministic absent default. A contribution of the present paper is to extend this efficiency
result to the standard incomplete markets environment where uncertainty affects the endowment



844 M. Aguiar, M. Amador / Journal of Economic Theory 183 (2019) 842-875

and the equilibrium consumption process. This requires the introduction of a new constraint that
restricts how continuation values can vary by state.

The efficiency of short-term bonds stands in contrast to models with long-term bonds.' This
distinction is made transparent in our dual formulation. The relevant objective for the represen-
tative lender is the market value of debt. The relevant constraint from incomplete markets is
that the face value of debt is noncontingent. Conditional on nondefault, with one-period bonds,
the market value equals the face value at the time of repayment; hence, the same function B
characterizes both the value and the constraint set, and the program searches for a single ob-
ject that satisfies the dual Bellman equation. With long-term bonds, this is no longer the case.
This provides a stark reflection of the fact that long-term bonds are subject to dilution (that is,
disagreement about fiscal policy between the lender and government) and can induce multiple
equilibria in the Eaton-Gersovitz model (see, for example, Aguiar et al. (2018) and Stangebye
(2018)).

The environment we study hews closely to the canonical one-period Eaton-Gersovitz models
popular in the quantitative literature, such as Aguiar and Gopinath (2006) and Arellano (2008).
Following the original Eaton-Gersovitz paper, we assume there is no reentry after default, but do
allow for arbitrary additional punishments. This makes the deviation utilities primitives of the
environment rather than equilibrium objects. The results can be extended to allow for reentry
under iid endowment shocks, but we do not have results for general Markov processes.

In addition to long-maturity bonds, other deviations from the standard one-period-bond Eaton-
Gersovitz model can lead to multiplicity. Lorenzoni and Werning (2018) consider an environment
in the spirit of Calvo (1988) where a government following a fiscal rule is vulnerable to self-
fulfilling shifts in the interest rate of its debt. Ayres et al. (2018) consider an environment in
which lenders offer the sovereign an interest rate before the sovereign commits to a borrowing
amount and show how this auction protocol generates multiplicity with one-period bonds.” This
highlights the role played by the Eaton-Gersovitz assumption that the government is strategic in
regard to the impact debt issuance has on prices.

Passadore and Xandri (2018) show that multiplicity can arise in the Eaton-Gersovitz model
if the government is prevented from holding assets. We therefore place no bounds on the space
of assets. To ensure that B is bounded, we restrict that consumption lies in an arbitrarily large
but compact set; this places a de facto upper bound on the government’s value achieved in any
equilibrium and hence ensures our equilibrium operator maps bounded functions into bounded
functions. As is standard, the government has time-consistent preferences. Therefore, the analysis
does not extend to models in which the government has quasi-geometric preferences, such as
Aguiar et al. (2011) or Alfaro and Kanczuk (2017).

The paper is organized as follows. Section 2 introduces the environment and provides a basic
characterization of equilibria. Section 3 shows that the equilibrium is a fixed point of a contrac-
tion mapping. Section 4 discusses the efficiency of the unique equilibrium and why fiscal rules
are not useful. We also discuss why introducing long-term bonds breaks the usefulness of our
dual approach. Section 6 shows how the analysis can be extended to the case of reentry after

1 See, for example, Chatterjee and Eyigungor (2012), Hatchondo et al. (2009), and the already cited Aguiar et al.
(2019b).

2 Lorenzoni and Werning (2018) also show how multiplicity arises with long-term bonds when the sovereign endoge-
nously chooses its expenditures but faces constraints in its ability to reduce the deficit when spreads are high. Also in
the spirit of Calvo (1988), Ayres et al. (2018) show how the same multiplicity arises when the sovereign commits to
financing a given fiscal deficit level before the market interest rate is determined.
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default (as long as the shock process is iid). Section 7 concludes. Appendix A collects all of the
remaining proofs not included in the main text.

2. The Eaton-Gersovitz model
2.1. Environment

Let us consider the standard sovereign debt model with one-period bonds, originally intro-
duced in Eaton and Gersovitz (1981). Time is discrete, indexed by t =0, 1, ..., and there is a
single tradable good that is the numeraire. There is a small open economy with a government
that makes all consumption, debt-issuance, and default decisions. There is also a international
financial market, populated by risk-neutral investors that demand a gross interest rate of R > 1.

Let 5; denote the exogenous state vector of the economy at time ¢, and let s denote its history,
up to and including period ¢. The exogenous state vector is s; € S where S is a finite set. Let
7(s’|s) denote the probability of state s” next period given s this period.

The timing within a period is as follows. The small open economy starts with an inherited debt
level b, all of which matures in the current period. Nature then draws the current state s. After
observing s, the government decides whether to repay its maturing debt or default. If it does not
default, the government receives an endowment y(s), auctions new bonds, pays off the maturing
debt, and consumes. We restrict attention to Markov-perfect equilibria of the game between the
government and the international financial markets.

We impose the following assumption on technology:

Assumption 1. The transition probabilities are such that 7 (s’|s) > 0 for all (s,s’) € S x S. In
addition, minseg y(s) =y > 0 and max;es y(s) =y < 00.

Let VR (s, b) denote the equilibrium value to the government if it chooses to repay its debt
given (s, b). If it defaults, we assume that the payoff to the government is exogenous and equal to
VP (s). Upon default, we assume that the lenders receive a payoff of zero. The default payoff for
the government may depend on the exogenous state, but does not vary with the amount of debt at
the time of default. Importantly, in this formulation, the default payoff is a primitive and does not
depend on the other aspects of the equilibrium.’ Strategic default implies that the government
defaults if VR(s,b) < VP(s). We assume, as it is standard, that the government repays when
indifferent, that is, when VR (s, b) = VL (s).

Government optimization Let us now consider the government’s problem. To rule out Ponzi
schemes, we impose that b < B, where we assume that B exceeds the present value of the
maximal endowment: B > YR/(R — 1). We let u(c) denote the utility flows received by the
government given an associated expenditure level ¢, and we assume that the government eval-
uates alternative spending plans discounting future expected utility flows with an exponential
factor g < 1.

We assume consumption is chosen from a compact set: [0, ¢]. As will become clear below,
an upper bound on consumption allows us to focus on a finite threshold for assets in any equi-

3 This is consistent with autarky and exogenous output losses as punishments for default, but it does not admit reentry
to financial markets, an extension that we discuss later on.
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librium.* The bound on consumption can be set to any arbitrarily large finite number, and in
particular we make the natural assumption that it is always possible to consume the present value
of the endowment in any period:

Assumption 2.¢ > Ry/(R — 1).

Define the upper bound on the value function by V = u(c)/(1 — p).
We assume that the government always prefers to default rather than consume zero in the
current period:

Assumption 3. There exists a ¢ € (0, ¢) such that

u(g)+ﬂV<mié1VD(s). €]

This last assumption implies that, conditional on repayment, consumption is bounded away
from zero — a feature that is helpful when proving the strict monotonicity of the equilibrium
value function.

We now discuss the government’s problem conditional on repayment. The government faces
an equilibrium price schedule g that maps the current state and newly issued debt b’ € R into
[0, R_l], where R is the world risk-free rate. Given the fact that the government commits to
repaying maturing debt b prior to auctioning »’, ¢ is not a function of b.° Hence, the budget
constraint of the government in state (s, b), if the government decides to repay, is ¢ < y(s) —b +
q(s,bHb'.

We let X feq45(s) denote the set of debt levels that are feasible to repay in state s € S and let
BF (s) denote its maximum:

Definition 1. In any equilibrium, we let X £,45(s) to be defined as:
X feas (s) = {b| there exists b’ < B such that y(s) + q(s, b )b’ — b > 0}.
And we let BF (s) represent the largest amount of debt that is feasible to repay in state s:

BF (s) = supX feqs(s) 2)

Note that X .45 and B depend on ¢ and hence, are equilibrium outcomes. If the current
amount of debt due, b, is such that b > BF (s), the government has no alternative to default as
repayment is not feasible. In that case, we let VR (s,b) =Vnrifb > BF (s), for some sufficiently
low value Vyr < mingeg VP (s).

Given exogenous state s and inherited debt b, the government’s problem conditional on re-
payment can be written recursively as follows:

Ih € X feas(s): VR(s,D)= sup  Ju(@)+ B> 7(s'ls) max HVR(S/, by, VD(s’)}
cel0,c],b’ s'eS

(©)

4 This assumption helps guarantee that the dual operator we provide below maps bounded function into bounded
functions.
5 See Cole and Kehoe (2000), and the discussion in Aguiar et al. (2014), for the implications of an alternative timing.
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subject to:
c<y(s)—b+q(s,bHb,
b <B.
Ifb ¢ Xfeax(s): VR(Sa b) =VnF

Note that the specific value of Vy r does not affect the value function VR (s, b) for b < BF (s),
as such value is off-equilibrium (that is, it always triggers default).

Lenders’ break-even condition Given the risk neutrality of lenders (and infinite collective
wealth), we replace the lenders’ problem and market clearing in the international financial mar-
kets with a break-even condition. In particular, given (s, ») and conditional on the government
repaying and auctioning ', let ¢ (s, b’) denote the equilibrium price of a bond that pays one next
period absent default. The lenders’ break-even condition for any s € S and b’ < B is°

R ifd' <0

q(s.b)=1._ .
RN s (s I9) L yr(y py=yD(sy;  Otherwise,

(BE)

where R~! denotes the international discount factor, as described previously. The first row on the
right-hand side states that (positive) assets return the risk-free rate.” The second row reflects that
debt will be repaid only if doing so is feasible and optimal for the government. A crucial feature
of (BE) is that current prices depend on the future only through the associated continuation value
VR in particular, the debt policy function that generates VR (s, »") is not directly relevant. This
is a consequence of one-period debt.

The value with no access to debt Before moving on to characterize the equilibrium with bor-
rowing, let us consider a restricted problem, where the government is only allowed to save and
cannot borrow, that is, » < 0. Let VN4 (s, b) denote the corresponding government’s value func-
tion. This value function is the unigue bounded fixed point of the following Bellman: equation

VA (s,b)= max Ju(c)+B Y m(s'Is)VVAG b)) (NA)
ce[0,¢],b’ o
subject to:
c<y(@s)—b+R'W
b <0

We impose the following assumption, which implies that default must entail some cost:
Assumption 4. Forall s € S, VN4 (s,0) > VL (s).

As established by Auclert and Rognlie (2016), Assumption 4 implies that the government will
never default without strictly positive debt (a result we confirm below).

6 Here, 1, denotes the indicator function that takes one if x is true and zero otherwise.
7 We have not explicitly ruled out default when the government holds assets abroad. However, Lemma 1 shows that
our Assumption 4 below is sufficient for this.
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Fig. 1. The government’s value function for a given s.

Definition of equilibrium Let X = {(s, b) such that s € S and b < B}, the set of admissible
states. With this, we can now define an equilibrium:

Definition 2. A Markov-perfect equilibrium consists of two functions, VX : X - Rand g : X —
[0, 1/R] such that: (i) given g, VR satisfies (G) for (s, b) in X, and the supremum in (G) is
attained for some policy; and (ii) given VX, g satisfies (BE).

2.2. Characterizing equilibria

We now establish key properties of the government’s equilibrium value function. In particular,
we establish that the value function, for a given s, is continuous, weakly decreasing, and strictly
decreasing whenever V is not feasible, as depicted in Fig. 1.

Preliminaries  We first establish some preliminary results. The first is a property of the feasible
repayment set, BY (s). Using Definition 1 and that ¢ (s, »’)b’ < R™'B, we have

BF(s) <y+R'B=B, forallseS.

That is, government borrowing is bounded by the present value of the endowment path that
features the highest income realization forever.

The next lemma states that it is never optimal to default with a weakly positive net asset
position (Part (1),® and it is never optimal to issue debt at a zero price (Part (ii)):

Lemma 1. In any equilibrium,
(i) Forany state s € S and b <0, VR(s,b) > VP(s); and

(ii) For any state s € S and b < BF (s), there exists an optimal debt choice b’ and at least one
element s’ € S such that VR(s',b") > VP (s).

8 Hence, setting g (s, b') = R~ for b’ <0 is without loss given Assumption 4.
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Part (ii) implies that there is always an optimal debt policy such that the government never
defaults with probability one next period.

Proof. The proof in the appendix. O

The next set of results concerns the feasibility of the maximal consumption, ¢, and the max-
imal government value, V. Let us define a level of assets that is sufficient to finance ¢ forever
regardless of future endowment realizations:

Definition 3. Let A(s) be such that

c—y

A(s)=c— y(s) + 1 forall s € S. 3)

Note that A(s) > 0. We have:

Lemma 2. In any equilibrium, for any state s € S, VR(s,b) =V if and only if b < —A(s).
Moreover, if ¢ = ¢ for any state (s,b) € X, then b < 0.

Proof. The proof in the appendix. O

Properties of the value function The following establishes continuity and weak monotonicity
of V& on the relevant domain for debt:

Lemma 3. In any equilibrium,

(i) Foranys €S, VR, b) is weakly decreasing]ior b < B (s).
(ii) For any s € S, there exists a unique threshold b(s) < B F(s) such that:

VR(s,b(s)) =u(c) + V.

(iii) Forany s €S, VR (s, b) is continuous for b < b(s).
Proof. The proof in the appendix. O
We can now strengthen the monotonicity result:

Lemma 4. In any equilibrium, for all s € S, VR(s,b) is strictly decreasing in b for b e

(—A(s), b(s)].
Proof. The proof is in the appendix. O
3. An Eaton-Gersovitz contraction operator
In this section, we proceed to show that the value function VR must solve a dual problem,
whose solution can be represented as the fixed point of a contraction mapping.

Toward this goal, we first combine the government’s problem (G) with the lenders’ break-even
constraint (BE) to write the equilibrium problem as



850 M. Aguiar, M. Amador / Journal of Economic Theory 183 (2019) 842-875

VRGs.b) = max {u@+pY n(s/|s)max{VR(s/, b, vD(s/)} (G)
cel0,el,b' =
subject to:

c<y()—b+b R [ﬂ{b’so} + 1m0y Y n(s/|s)1{VR(s/,b’)2VD(s/)}:| :
s'eS

b <B,

where again, we let VR (s, b) = Vyr if the constraint set is empty.

Problem (G’) has the familiar recursive structure that takes a continuation value function and
maps it into the current value state by state. Any equilibrium value function V¥ is a fixed point
of the operator defined by this Bellman equation. The quantitative sovereign debt literature has
developed algorithms to find this fixed point numerically. While the operator is monotone and
maps the space of bounded functions into itself (if u is bounded), it does not satisfy discounting.
Even more, it is possible to show that the operator is not in general a contraction mapping (we
provide such an example in Appendix B).

Fortunately, we show below that there is a transformation that delivers an operator that does
satisfy all of Blackwell’s sufficient conditions. This alternative operator involves the dual prob-
lem to (G).

3.1. The dual problem

Given an equilibrium value V®(s, b), let us define the dual of the optimization problem in
(G):

B(S, U) = Ssup [y(S) —Cc+ Ri1 |:]l{b’50} + ]l{b’>0} Z ﬂ(s/|s)ﬂ{VR(s’,b’)ZVD(s’)}:| b/}
b

cel0,c]

s'eS
(B)
subject to:
v=u(c) + B Zn(s’|s)max{VR(s/,b’),VD(s/)], (4)
s'eS
¥ <. )

We now establish a basic duality result, namely, that the inverse of the government’s value
function satisfies problem (B). Specifically, Lemmas 2, 3, and 4 imply that in any equilibrium,
there exists a continuous, strictly decreasing function B(s, v) such that

v=VE(s, B(s, v)

forall s,v € S x V where V = [u(c) + BV, V], with B(s, V) = —A(s) and B(s, u(c) + BV)) =
b(s) for all s € S. That is, B(s, v) is the inverse of equilibrium value function V (s, b) with
respect to its second argument, b, over its strictly decreasing range (—A(s), b(s)). Then, we
have the following duality result:

Lemma 5. The function B(s,v) = é(s, v) forall (s,v) €S x V.
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Proof. The proof is in the appendix. O

In the next subsection, we show how the solution to problem (B) can be represented as the
fixed point of a contraction mapping operator.

3.2. The equilibrium operator

The inverse value function B is a fixed point of an operator implicitly defined in (B). More
formally, define the following operator 7' on functions f :S x V — R:

Tfs.o)=  sup { ) —c
c€[0,EL0 {w (s} es

+R! Ti<oy + Loy Z 7(s"19) Lyy(sy= v 0 (s b’} (T)

s'eS

subject to:
USM(C)+,BZn(s’ls)max{w(s/),VD(S/)} (6)
s'eS

b' < f(s', w(s") forall s’ € S such that w(s') > V°(s) 7

w(s’) eV forall s €8S.

Before discussing useful properties of this operator, we discuss differences with the original
dual problem (B). The key alteration is that the government’s repayment value VX no longer
appears in the problem. Rather, the problem allows the choice of the government’s continua-
tion value state by state, represented by {w(s’)}scs. In this sense, the problem shares a passing
resemblance to a standard contracting problem in which a risk-neutral principal insures a risk-
averse agent, subject to limited commitment on the part of the agent. We shall return to this point
in Section 4.

However, recall that one crucial friction in the Eaton-Gersovitz model is the lack of state-
contingent liabilities. This is accommodated by the presence of b’ in the objective and the
constraint (7). Specifically, the continuation value in the objective is a scalar, &, rather than a
state-contingent vector of values. This is the noncontingent debt carried into the next period.

Moreover, the choice of the government’s continuation values must be consistent with the
choice of »'. Hence, a new constraint (an implementability constraint) is introduced in (7). The
equilibrium imposes that debt and the government’s payoffs be related by o’ = B(s’, w(s")) for
all ', which is equivalent to w(s’) = VE(s’, »’) for all 5.”

In problem (T), we have relaxed this equality constraint to an inequality, imposing it only for
levels of the continuation value that do not trigger default. This change allows to restrict attention
to continuation values w(s’) that lie in V and thus only values in the domain of the fixed point
of (T) need to be considered. '’

9 Aguiar et al. (2019b) study a sovereign debt model without endowment risk. They also obtain a dual characterization
similar to (T), but without the need for constraint (7) as the equilibrium allocations in their model were deterministic
conditional on repayment.

10" I the primal problem, it is in principle possible that for some b’ and some realizations of the state s’, VR (s’, b) ¢ V.
Without this change in the dual problem, it would be necessary to assign a debt value to utility levels outside the domain
of f, V. As we show in Lemma 6, we can bypass this issue.
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Note that, relative to (B), we have also replaced the equal sign in the promise keeping con-
straint with an inequality in (6) and dropped the no-Ponzi condition, which required b’ < B.

Despite these alterations, the equilibrium B that solves (B) is a fixed point of the operator
defined by (T):

Lemma 6. Any equilibrium B(s, v) is a fixed point of T.
Proof. The proof is in the appendix. O
3.3. A contraction mapping

We have shown above that the operator 7 admits as a fixed point the dual of any equilibrium
value function. Interestingly, even though the original operator that defined V* was not a con-
traction mapping, the operator 7', which works on the dual of V& is a contraction mapping. We
now proceed to show this.

Toward that goal, we endow the space of functions on which T operates with the sup norm.
Our first statement is that 7 maps bounded functions into bounded functions:

Lemma 7 (Boundedness). Let f : S x V — R be bounded in the sup norm. Then T f is a bounded
function.

Proof. Consider a bounded J such that || f|| < M for M > 0. For any state so, vo, consider the
policy of ¢ =¢ and w(s") =V for all s’ € S. Let b, < —M. The policy co, b, {wo(s")} satisfies
the constraint set of problem (T), and thus

(Tf)(s0,v0) = y(so) —c—M/R>y—c—M/R,

but also

(Tf)(s0,v0) <y+ M/R.

Thus, [[(Tf)(s0, vo)|| < max{y + M/R,¢ — y + M/R}, which is independent of (so, vo), and
thus, ||Tf|| <max{y + M/R,c —y+ M/R}, which is bounded. O

Note that this is the place where our assumption that consumption of the government has
an upper bound has really been used — it guarantees that the dual operator 7 maps bounded
functions into bounded functions. Note also that the particular value of ¢ is irrelevant for all of
the analysis above, as long as it is large enough so that Assumption 2 is satisfied.

We next show that the operator 7 is monotone, a property also shared with the original oper-
ator implicit in (G'):

Lemma 8 (Monotonicity). Let f, g be bounded functions mapping S X V to R, with f(s,v) <
g(s,v) forall (s,v) €S x V. Then, (Tf)(s,v) <(Tg)(s,v) forall s,veS x V.

Proof. Note that (T g)(so, vo) only differs from (7 f) (sg, vo) because of constraint (7). It follows
that any choice available at (T f)(sg, vo) is also feasible at (T'g)(so, vo) and delivers the same
objective. Hence, (T f)(s,v) < (Tg)(s,v) foralls,veSx V. 0O
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The final step, and the one where the dual representation is exploited, is to show that the
operator T satisfies the discounting property with modulus R~

Lemma 9 (Discounting). Let a > 0 and let f :S x V — R be bounded. Then,

[T(f +a)(s,v) < (Tf)(s,v) + R 'a
foralls,veS x V.

Proof. Let a > 0 and we have

[T(f +a)l(s,v) =, max {y(s) —c+ R max{0,5') Y 7 (s'19)1 >0y
’ ’ s'eS

+ R~ min{0, b’}}

subject to:

v=ule)+p Yy w(s'ls)y maxfu(s), VP (s")

s’eS
b < f(s',v(s")) +a forall s’ € S such that w(s") > VP (s"),
cel0,¢]
w(s) eV foralls €8,

where we have just replaced 5’1, - with max{0, '} and b'1; <o, with min{0, b'}.
We can rewrite the final two terms in the objective as

R~ max{0, b} Z”(S/|S)]1{v(s’)zv0(s/)} + R~ 'min{0, 5’} =
s'eS

R~ "max{—a, b —a} Z (8" 1)Ly sn=vD sy + R~ 'min{—a, b’ — a}

s'eS
+aR™! (Z (5 19) L= v oy + 1) <
s'eS

R 'max{0, b’ — a} Z 7 (s'15) L1y (1= v 0 (s + R min{0, " — a}

s'eS
+aRr-! (H{h’>a} DTG 1)z von) + ﬂ{h’<a}> =
s'eS

R™'max{0,6' —a} Y " 7(s'1) L=y (e + R~ min{0, 5’ — a)

s'eS

+aR71
Defining b = b’ — a, this implies

[T(f+a)l(s.v) < max_y(s) —c+ R "' max{0,5) Y 7(s[s) L=y 050
cv(s),b s'eS
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+ R 'min{0,b} + R 'a

subject to:

v=u(e)+p ) m(s'ls) max{u(s), VP (s")

s'eS

b< f(s',v(s") fors’ €S.

Note that this problem is identical to the original, save for R~'a in the objective. In particular,
[T(f +a)l(s,v) <[TfI(s,v) + R'a. Thus, T discounts with modulus R~'. 0O

The intuition behind the discounting result in Lemma 9 is simple. Suppose that for all possible
values to the government fomorrow, the payoffs to foreigners in case of repayment increases by
an amount a > 0. Absent default tomorrow, this change would lead to an increase in the present
value of payments to foreigners foday of R~'a. The possibility of default only reduces this value.
Hence, the addition of a to the (dual) continuation value increases the expected present value of
repayments today by at most R"'a < a."’

Lemmas 7, 8, and 9 imply that the operator T satisfies Blackwell’s sufficient conditions.
Hence, the operator T is a contraction with modulus R~!. The contraction mapping theorem
states that there is a unique fixed point of 7' in the space of bounded functions. Recall that we
have shown that an equilibrium dual value function B(s, v) is a fixed point of 7', and thus there
is at most one equilibrium in the Eaton-Gersovitz model.

Note that the contraction mapping theorem guarantees the existence of a fixed point of 7. It is
possible to invert this fixed point and construct a primal value function and a price function that
satisfies the conditions in Definition 2; proving the existence of an equilibrium. '

We summarize these results in the following proposition:

Proposition 1. There exists exactly one Markov-perfect equilibrium.

Proof. The proof of uniqueness follows directly from the uniqueness of the fixed point and the
fact that we have already shown that an equilibrium is a fixed point of 7.
The proof of existence is in the appendix. O

3.4. Discussion of uniqueness

Auclert and Rognlie (2016) is the first proof of uniqueness in the Eaton-Gersovitz model. Au-
clert and Rognlie (2016) use a different approach to establish the result. In particular, they prove
uniqueness by contradiction. Assuming a second equilibrium, the authors construct portfolios
that mimic the allocation in the original equilibrium. Thus, the government’s welfare is pinned
down by the best equilibrium. As prices depend only on the government’s value, this uniquely
determines prices. There is a link to our proof in that we both exploit the fact that the government
commits to pay all of its outstanding debt before taking on any new debt, in which case bond
prices depend on the government’s values next period (which depend on the amount borrowed),

1" Note that the dual value function only appears in the constraint (7). Because this constraint is linear in the continuation
value and binds with equality, this generates an increase in promised payoffs (b") by an amount a.
12 Auclert and Rognlie (2016) provide an alternative proof of existence using the monotonicity of the primal operator.
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but crucially not on future fiscal policies. As we shall see, longer maturity debt does not have
this feature, and the equilibrium is not necessarily unique.

If the government is restricted from holding assets, then the equilibrium is not unique. Pas-
sadore and Xandri (2018) discuss multiplicity in an environment without assets. If we restrict
b’ > 0, we need an additional constraint in (T). In that case, our proof that T satisfies discounting
is not valid. Auclert and Rognlie (2016) show that allowing for an arbitrarily small amount of
assets is sufficient to restore uniqueness. The key is that there is some level of assets (or debt) for
which default is never optimal regardless of creditor expectations.

On the irrelevance of sunspots  Suppose that we were to enlarge the state space S by including
an additional state variable z € Z, unrelated to any payoff relevant state. This could represent, for
example, a sunspot random variable or something related to the history of actions taken by the
government. Let (s, z) € S x Z represent an element of this new state space. The same arguments
as above tell us that there is a unique Markov equilibrium, with a value function VR((s,z), b) that
is the unique fixed point of operator (G') under the enlarged state space. Now suppose VX (s, b)
is the fixed point of (G") under the original state space that restricts attention to payoff relevant
states s € S. It immediately follows that VR((s,2),b) = VE(s,b) is a fixed point under the
enlarged state space. Given that the fixed point is unique, there are no other equilibria. Thus,
sunspots or payoff irrelevant state variables have no impact on the equilibrium of the model.

Bulow and Rogoff (1989)’s argument In their 1989 paper, Bulow and Rogoff show in a
complete-markets environment that no strictly positive level of debt is sustainable if the govern-
ment can save after default and if there are no other direct costs of default besides the inability to
borrow again. Their result is based on an arbitrage argument. It is possible to use the uniqueness
of the Markov-perfect equilibrium to show that the same result holds in the Eaton and Gersovitz
(1981) environment, where markets are incomplete.'”

Toward this end, let V2 (s) = yNA (s, 0). That is, the government, after default, can save but
cannot borrow again. The Bulow-Rogoff claim is that, given this outside option, borrowing is
not sustainable in equilibrium. To prove the Bulow-Rogoff claim, we posit that it is true and
construct the associated equilibrium value function. If the associated value is a fixed point of
(G), then zero borrowing is the only possible equilibrium outcome.

Specifically, conjecture the following equilibrium price schedule:

R~! forb<0
BR =Y
’b =

47 (. b) {0 forb > 0,

and value function, VBR (s, b), defined for b < y(s) as

VBR(s,h) = max {u(c)+ﬂzn(s/|s)v“(s,b/)
cel0,c],b’

s’eS
subject to:
c<y(s)—b+R'W,
b <0,

13" Auclert and Rognlie (2016) use their replication argument to show that the Bulow and Rogoff (1989b) result holds in
the Eaton-Gersovitz model. See also Bloise et al. (2017) for a general argument under incomplete markets.
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and as VBR (s, b) = Vyp for b > y(s) (as before).

Note that VBR (s, b) = VNA(s, b) for b < 0 and VER(s,b) < VNA(s,0) = VP(s) for b > 0
(this last following from strict monotonicity of the problem above). This value function justifies
the conjectured price ¢ 2% and is a fixed point of (G'). Given that there is only one fixed point of
(G'), it follows then that {gB®, V BR} is the unique Markov equilibrium. This equilibrium entails
immediate default for any b > 0: no level of borrowing can be sustained.

Fluctuations in the risk-free rate It is straightforward to see that we can extend the environment
to allow for a stochastic or time varying risk free rate. In particular, suppose we replace R with
a function of the exogenous state R(s). If R = mingcg R(s) > 1, Lemma 9 still holds. Hence,
the dual operator remains a contraction mapping, with modulus R~!, and the uniqueness result
is preserved.

In addition, the Bulow and Rogoff (1989) argument described above holds as well for this
case, as long as R > 1. That is, without additional punishment for default other than zero access
to debt markets, but with the ability to save in a risk free bond after default, the unique Markov
equilibrium cannot sustain any borrowing. This result is closely related to Bloise et al. (2017),
who have obtained more general conditions for it. It also connects with the recent work by Bloise
et al. (2018), who have constructed interesting examples with no punishments and where borrow-
ing is sustained, but where the real interest rates is required to be recurrently below 1; that is,
R < 1 (or more generally, below the rate of growth of the economy).

4. Constrained efficiency: why fiscal rules add no value

In this section, we show that the equilibrium of the Eaton and Gersovitz (1981) model with
one-period bonds is constrained efficient, when the incompleteness of the markets and the gov-
ernment’s inability to commit to repayment are both taken into account.

To understand this point, consider a situation where the government at time # = 0 commits to
a sequence of debt issuances as a function of the history of shocks: b = {b(s")}, si, where s' =
(50, 81, ..., §t) denotes the history of exogenous shocks through time ¢ and b(s’) is the amount
of debt issued at history s’ and due in period ¢ + 1. We can think of such a state-contingent
debt-issuance policy as arising from a constitutional fiscal rule. The government, however, is still
able to default if its equilibrium value of following this rule lies below the corresponding outside
option for that state.

The potential value to the government of committing to such a rule is that it potentially affects
equilibrium prices. That is, as the government is large in its own debt market, it recognizes that
there is a corresponding sequence of equilibrium prices associated with a particular fiscal rule.

Define the sequence {c(s"), v(s")} associated with a fiscal rule, given an equilibrium price
q = {q(s")}, by the following recursion:

¢(s*) = min {y(s') —b(s" Y+ g(sHb(s), E}

v(sH =u(e(s")) + B Z 7(s'|s") max [v({st, s'D, VD(S’)}, (8)
s'eS

VNF

where we let v(s") = if c(s’) < 0, as before. The price must keep lenders indifferent, and

thus,

-1 / t o D/ : t
a(") = {R ZS/TL’(S [)L{v{s",s')) = V7)) ifbs’) >0 ©)

R~! if b(s") <0.
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Thus, associated with any fiscal rule is a sequence {c(s"), v(s"), g(s")}; ;. The fiscal rule
design problem is then to choose b to maximize initial value, v(sg) given b(s~1) = by:

V*(s0, bo) = sup v(so) subject to b(sfl) = by, (8) and (9). (10)
{b.q.{v(s"),c(sN)}}

In this fiscal design rule, we are assuming that the designer can choose both the debt sequence
and its associated price (as long as the latter satisfies the break-even condition for the lenders).
In this way, the designer is allowed to choose the best price (if there were many consistent with a
given fiscal rule). That is, the designer can coordinate the lenders’ expectations. As we will argue
next, there is no value to the fiscal rule even in this case. As a result, there will be no value either
when the designer cannot coordinate the lenders’ expectations.

Using the dynamic programming principle, it follows that V* must solve

V*(s0, bo) = sup u(co) + Z 7 (s'|so) max{v({so, s'}), VL (s")}
c0,b1,1,(b(s), g ("), v =1, ves
(11)
such that
co =min{y(so) — bo + q1b1, ¢} (12)
R m () L{v({so. s') = VP(sH}  if by >0 13)
"R ith <0
{v(s"), b(s"), q(s")};>1 satisfy b({so,s'}) = by forall s’ € S, (8) and (9).
(14)

Note that it is optimal to choose a continuation sequence {v(s’), b(s"), g(s")};>1 such that
v({so, s'}) = V*(s’, by) for all s" € S. Replacing v({sg, s'}) by V*(s’, b1) in the above, we have
an operator that maps the space of potential V* into itself. The value associated with the opti-
mal fiscal rule is a fixed point of this operator. This operator is identical to that defined by the
equilibrium in problem (G’). Given that we have shown that there is a unique fixed point to this
operator, it follows that VR(s,b) = V*(s,b). Thus, the ability to commit to a fiscal rule offers no
scope to increase the government’s value over the Markov-perfect equilibrium value.

A critical feature of the fiscal rule design problem above is that the value of autarky, V?(s),
is not affected by the rule. This is natural under the assumption that, once the country defaults, it
cannot access financial markets again, and as a result, it is restricted to consuming its (reduced)
endowment. If we were to change the environment and allow the designer to affect, through the
fiscal rule, the value of default (and hence, equilibrium prices), then it is possible to construct
examples where a fiscal rule generates a value higher than the Markov-perfect equilibrium. It is
not surprising that it may be desirable to manipulate the outside option of an agent in this limited
commitment model — as this potentially relaxes a main friction in the environment.'* Our point
here is that, beyond this (that is, given the value of default to the government), the equilibrium
allocation cannot be further improved once the incompleteness of markets is taken into account.

14 For other examples where a policy that affects the outside/default option of the agent in a limited commitment model
is beneficial see Aguiar et al. (2009a) in a context with investment, and Arellano et al. (2010) in a sovereign default model
with dollarization. See Kehoe and Levine (1993) for a general discussion of efficiency in limited commitment models.
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5. Long-term bonds: why the contraction argument fails

Let us now briefly extend the model to incorporate long-duration bonds as in Hatchondo et al.
(2009) and Chatterjee and Eyigungor (2012). As is now well known, long-duration bonds gener-
ate an inefficiency into the environment, a point analyzed in detail in Aguiar et al. (2019b).'

The environment is modified in the following way. Rather than issuing a one-period bond, the
government instead issues a perpetual claim to an exponentially declining coupon. Specifically,
a perpetuity issued at time ¢ offers to pay a coupon 1 in period ¢ + 1, (1 — §) in period ¢ + 2,
(1 — 8)% in period ¢ + 3, and so on. The parameter § controls the speed at which the coupon
decays: 6 = 1 corresponds to the one-period bond, and § = 0O corresponds to a perpetuity that
never decays. Define b as the stock of debt entitled to a coupon 1 today; hence, absent issuance,
b decays at the rate §.

In a Markov-perfect equilibrium of the long-duration bond model, the government solves the
following problem:

VR, b)=  sup {u(c) +B8Y w(s'ls) {VR(s’, b), VD(s/)]}

{ce[0,],b<B} s
subjectto ¢ <y —b +q(s, b) (b' — (1 —8)b),

where b’ — (1 — 8)b represents the amount of new bond issuances and g (s, b')(b' — (1 — §)b) the
amount of revenue raised from them. Let B(s, b) denote an associated equilibrium debt policy
function.

Risk-neutral pricing from the perspective of the lenders leads to the following break-even
condition:

R™! ifo' <0
R_l ZS/ T[(S/|S)]1[VR(S/,b’)ZVD(S’)] [1 + (1 — (S)q (S/, B(S/, b/))] if b/ > 0.

In case of no default next period, the bondholders receive both the coupon as well as the market
value of the remaining bond: 1+ (1 — 8)g(s’, B(s", b")).

The important element to highlight here is the presence of the equilibrium debt policy func-
tion, evaluated at the subsequent state: the price of the long-duration bond depends not only on
the debt policy chosen today (&), but also on the debt policy that the government will choose
in subsequent periods. Even if V& (s, b) is strictly decreasing over some domain, implying that
there is a well-defined inverse B(s, v) that maps the government’s value to the face value of debt,
this mapping is conditional on a policy B. Hence, the equilibrium cannot be written as the fixed
point of a contraction mapping, as was the case for the one-period bond model. Indeed, as shown
in Aguiar et al. (2018), there exists parameter values such that the long-duration model features
multiple equilibria — each of them featuring different issuance policies.

q(s,b) ={

6. Reentry after default

In our previous analysis, we have assumed that default entails permanent exclusion from finan-
cial markets. The quantitative literature, however, usually assumes that exclusion is a transitory

15 This inefficiency is sometimes referred to as “dilution” in the sovereign debt literature. See Hatchondo et al. (2016)
and Hatchondo et al. (2015) for explorations of this inefficiency and its interactions with alternative fiscal rules. Arellano
and Ramanarayanan (2012) quantitatively explore its implications for maturity choice.
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state: a government eventually reaccesses the international financial markets. In this section, we
show that, under the assumption that shock process s is iid across time, it is possible to extend
our dual approach to show uniqueness when reentry subsequent to default is possible.'®

Toward this, let VP (s) denote the value of default under no reentry. The assumption is that
as long as the government is in the default state, the endowment is yD (s) < y(s), where a strict
inequality represents the output lost after default. Specifically, let

VP(s)=u (yD(s)) + BEVP(s).

Note that V2 (s) < VN4(s,0) forall s € S.

Now suppose that default is punished by the same lost endowment, but with constant hazard 9,
the government’s liabilities are forgiven and it regains access to bond markets.'’ Let VP denote
the associated default value conditional on an equilibrium repayment value function VX:

7P() =u (yP()) + B~ OEV(s) +6BEVE(s',0).
Let us define by v the expected gain from reentry:

vo=E [VR(s, 0) — VD(S)] >0.

Manipulating the expressions for V2 and VP, we find that

op
1-B(1—06)

In order to show uniqueness, we proceed as follows. As a first step, we take vp as a primitive
of the environment and show that for a given vy, there is a unique equilibrium of the model. This
step follows the same arguments as in the previous analysis. This implies a mapping from vg to
an equilibrium value function. Consistency requires that vy = E[VR(s,0lvg) — VP(s)], where
VR (s, b|vg) is the equilibrium value of repayment conditional on the posited vg. The final step is
to show there is a unique vy that satisfies this equation.

Given a value of vy, we can write the problem of the government as follows:

\7D(s) = VD(s) + yvg, wherey=

VR(s,blug) = max {u(c)+pB Z (s") max {VR(S’, b), VP + yvo}
cel0,c1,b' =

subject to:

c=y()—b+b R [l{b/sm + L0y ) n(s/)]l{VR(s’,b/)ZVD(s’)+)/vo}:| ’
s'eS
b' <B,
where, as in the benchmark (G’), we have substituted prices using the break-even condition.
Conditional on vy, this problem is isomorphic to the benchmark (G’); the only difference is
that VP is translated by a constant y vg. It is helpful to define VR(S, blvg) = VR (s, blvg) — Y 00.
Using the above, we can write that

16" Auclert and Rognlie (2016) also extend their uniqueness proof to encompass reentry under an iid shock process.
17 The initial quantitative work of Aguiar and Gopinath (2006) and Arellano (2008) both assume such a stochastic
reentry process.
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VR(s,blug) = max {u(c)—(l—ﬂ)yvo+ﬂZn(s/)max{\?R(s’,b/|vo),VD(s/)}}
cel0,cl,b’ =

subject to:

c<y(@s)—b+bR! [l{b/g()} + 1o Z 7T(S/)]l{‘;R(s/,bqu)ZVD(S/)}} ,
s’'eS

b <B.
In this translated notation, the consistency condition is (1 — y)vg =E [VR(S’ ,0|vg) — yD (s’)].

The payoff of the translated problem is that \7R(s, b|vp) is decreasing in vy, a feature we now
prove.

As in our analysis before, VR (s, blvp) is strictly decreasing in b for —(A(s), b(s)], where
A(s) is as defined before, and b(s) is such that VR (s, b(s)|vo) = u(c) + BV — yvo.

We exploit the dual representation to show that VR is decreasing in vg. Let B(s, v|vo) be the
inverse of VR (s, b|vp) on the translated domain V=[u (c)+ BV —yuvg, V—yvpl. Assumption 3
still implies that the continuation value of u(c) + BV — yug triggers default, as vy > 0. Thus,
all of our conditions from the previous analysis apply, and B is a fixed point of the following
operator:

(T flvo)(s, v)

= max $)—c+R V| Liyyeor+ 1y a(sHLy, m| b
ce[O,E],b’,{w(s’)}x’GS[y() [ e >0}Z € wtrzvoeen

s'eS
subject to:
v=uE) = (1 =Pyv+p Y a(s)max [ws), VP))
s'eS
b < f(s', w(s")) forall s’ € S such that w(s") > VP (s")
w(s") € V forall s’ €8S.
As in the benchmark environment, this operator is a contraction, given vo. Hence, it provides
a mapping from vg to a set of unique values, x(s|vg) = VE(s, 0|vg) for all s € S. If vy satisfies
E [x(slvo) — VP(s)] = (1 — y)vo, then we have an equilibrium. The question is whether there

are multiple values of vg that satisfy this consistency condition. To answer this, we first note that
B (s, v|vg) is monotonic in vy:

Lemma 10. é(s, v|vg) is decreasing in vy.

Proof. Consider two values of vy: a, b, where a < b, and let B, and B, be the corresponding
fixed points of T'(-|a) and T (-|b). Then
B, =T (Byla) = T (Bu|b).

Given that 7 (-|b) is a monotone operator (and a contraction), iterating on the above expression
implies that

B, > lim T"(B,|b)=Bp. DO
n—>oo
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Recall that equilibrium consistency requires that
(1= )00 =E [x0(slu0) = V2(s)]. (15)

where x((s|vg) are values such that B(s, xo(s|vo)|vo) = O for all s € S. The monotonicity of
B with respect to v and v implies that, as vy increases, xo(s|vg) must decrease to maintain
B(s, xo(s|vo)|vo) = 0. Hence, the right-hand side of equation (15) is decreasing in vg. The left-
hand side is, however, strictly increasing in vg. Hence, there is a unique vy that is consistent with
equation (15). Thus, there is a unique Markov perfect equilibrium in the model with iid reentry.

7. Conclusion

We have shown that a dual approach to characterizing the Markov-perfect equilibria of the
Eaton-Gersovitz incomplete markets sovereign debt model implies that the inverse of the equilib-
rium value function is a fixed point of a contraction mapping. This result implies the uniqueness
and existence of equilibrium in the Eaton-Gersovitz model. It may potentially be useful in nu-
merical analysis. Given that the equilibrium can be characterized with a contraction mapping
operator, iterating the operator guarantees monotonic convergence with modulus R,

The fact that the operator resembles an optimal contracting problem between lenders and the
government, subject to an additional implementability condition capturing the market incom-
pleteness, sheds light on the efficiency properties of the model’s unique equilibrium.

Appendix A. Proofs
A.l. Proof of Lemma |

We prove each part of the lemma:

Part (i). Let CV4(s, b) and BN (s, b) denote the optimal consumption and debt policies of
problem (NA) for b < 0, which exist by standard arguments. Such a policy is feasible in an
equilibrium for any » < 0, as BN4(s, b) < 0 and the corresponding equilibrium price is R~ It
follows that, for all » <0,

VR, b) = u( (s, 0) + B Y 7 (' 19)VE(s', BN (5, b))
s'eS
Iterating this equation forward, using that BN4(s, b) < 0, we obtain that VR (s, b) > VNA(s, b)
forall b <O0.
Assumption 4 then implies that VR (s, b) > VNA(s,b) > VP (s) foralls € S and b < 0.

Part (ii). For b < 0, the result is immediate from VX (s, 0) > VP(s) for all s € S. For b > 0,

suppose that this is not the case, and VR(s’, ) < VP (s") for all s’. This implies that default is
occurring with probability one next period. As a result, the price of the bonds is ¢ (s, ") = 0.
Thus, from the budget constraint, we have that

c<y(s)—>b.

Now consider the alternative policy of issuing zero bonds, b’ = 0. That policy can attain the
same consumption level (as it generates the same budget constraint), and the value under this
alternative policy is
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u@y+§:n@qan@¢m

s'eS
>u(e)+ Y 7 1)HVP ()
s'eS
=u(c) + Zn(sﬂs) max{VR(s/, b, VD(S/)}
s'eS
=V, b),
where the second line follows from Part (i) and the third from the premise that VR, b)) <

VD (s') forall s’ € S. Hence, such b =0is a strict improvement (a contradiction) or also consti-
tutes an optimal policy.

A.2. Proof of Lemma 2

We proceed to prove in each statement individually.

If b < —A(s), then VR(s, b) = V. Start from state (s, b), with b < —A(s), and consider the
strategy of setting ¢ =¢ and b’ = 285 (c — y) = —max,cs A(s) <0. As b’ <0, g(s,b') = R™!
and the budget constraint is satisfied:

y(s) —b+R7'Y
> y(s) +A(s) — @ —y)/(R—1)

=c,

where the last equality uses the definition of A(s). Hence, ¢ = ¢ is feasible. As b’ < —A(s')
for all s” € S, the same policy is feasible the following period. It then follows that consuming ¢
indefinitely is feasible and achieves the highest possible utility level, V.

If b > —A(s), then VR(s, b) < V. Suppose, to generate a contradiction, that VE(s, b) = V.
To achieve this value, consumption must equal ¢, independently of the sequence of realized
shocks in future periods. Consider the sequence with y =y for the next k periods. Iterating

on the budget set with ¢ = ¢ implies there exists a k < 0o such that debt exceeds B, violating the
no-Ponzi condition.

If ¢ = ¢ for any state (s, b) € X, then b < 0. If ¢ = ¢ is feasible, then there exists a b’1 <B
such that

c<—b+y(s)+q(s, b)b;

< —b+ y(s)+ sup g(s,b" )b
b'<B

=—b+ BF(s),

where the last equality uses Definition 1. Thus, b < BF (s) —¢ < 0, where the last inequality uses
Assumption 2.
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A.3. Proof of Lemma 3

We proceed to prove each part.

Part (i). Note that the constraint set in (G) is shrinking in b for b < BF (s), where BF (s) is the

maximal debt level that is feasible to repay. It then follows that, for any s, VX (s, b) is weakly
decreasing in b for b < B (s).

Parts (ii) and (iii). Note that VX (s, —A(5)) = V > u(c) + BV > limy| gr 5 VX (s, b). The last
inequality follows from noticing that the feasible consumption choices approach 0 as b ap-
proaches BY (s). Then, there exist thresholds b(s) < Bf (s) such that VR(s,b) > u(c) + BV
for b < b(s) and VE(s, b) < u(c) + BV for b > b(s).

To establish continuity, consider a point by < b(s).Let by = by —e for € such that c/2>¢€>0.
Let (c1,b}) be an optimal policy for state (s, by). As by < by < b(s), we have u(c) + BV <
VR(s, b1). This, combined with VR(s, b/l) <V, requires cj > c.

Now consider by = by + €. Consider the debt choice b’ = b/1 starting from b,. The associated
consumption is ¢; = c¢| + by — by = ¢ —2¢ > ¢; — ¢ > 0. Note also that ¢; < ¢; < c. Hence, this
consumption and debt choice is feasible but may not be optimal. This implies V& (s, b1) +u(c; —
2¢) —u(cy) < VR(s, by) < VE(s, by), where the last inequality follows from weak monotonicity.
As u is a continuous function and ¢; — 2¢ is bounded away from zero, VX (s, by) — VR (s, b))
as € — 0. Thus, V& (s, b) is continuous for all by < b(s) and part (iii) is proved. The fact that
VR(s,b(s)) = u(c) + ﬂv, which is part (ii) of the lemma, follows directly from continuity.

A.4. Proof of Lemma 4

The proof is by contradiction. In particular, in contradiction to the lemma, consider the fol-
lowing premise: for some s € §, there exist by, b1, with by < b; < b(s) such that VR(so, bo) =
VR (s9, b1). We establish a number of results based on this premise:

Claim 1. The equilibrium policy at (s, by) sets consumption to its upper bound: c| =c.

Proof. Let b’1 denote an optimal debt choice at by associated with cy. If ¢; < ¢, then it is feasible
at by to issue b’l while consuming co = min{c; + by — bg, ¢} > c¢1. This yields a value strictly
greater than VR, b)), contradicting the premise. O

The next claim is that the continuation value following b; is flat in the neighborhood below
an optimal debt choice b] in states of repayment:

Claim 2. If b is an optimal debt policy at (s, by), then for all s € S such that VR (s', b)) >
VP(s'y and b’ € (b — R(b1 — bo), b)), we have VR(s',b') = VR(s', b)).

Proof. By weak monotonicity, VE(s",b') > VR(s/, b)) for all s € S if b’ < b}. Now suppose,
contrary to the claim, that there is an § € S and b’ € (b; — R(by — bp), by) such that VR (5, ') >
VR, b)) = VP (§). Consider then the following policy in state (s, bg): ¢ = ¢ and b, = b’. To
see that this is feasible, recall that ¢ is the consumption policy for b;. Hence,

¢ < y(s) — b1 +q(s, b))b)
<y(s) = b1 +q(s,b)b
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= y(s) —bo +q(s,b" )b’ — (b1 — bo) +q(s,b") (b} — b")

< ¥(s) = bo +q(s,b)b" — (b1 — bo) +q (s, b)R(by — bo)

<y(s) —bo+q(s,DHY,
where the second line uses the weak monotonicity of g(s, .); the third line adds and subtracts
bo and g (s, b")b’; the fourth line uses the fact that ' > b} — R(b; — bo) and ¢(s,b’) > 0; and

the final line uses that ¢ (s, ') < R™!, implying (b; — bo)(g(s, )R — 1) < 0. The policy {c, b’}
generates a value to the government that is strictly higher than VR (s, by):

u@+pYy_ w(s|s)ymax{VE(s' b)), VP (s)
s'eS
>u(@ + pr@IHVEGE. b+ B Y m(s|s)max{V R, b)), VP (s}
S#S
>u@+ By w(s|ls)max{(VE(s', b)), VP (s)
s'eS

= V%, b,
where the first strict inequality uses the premise that VX (§,5') > VR (3, b)) > VP (§); the second
inequality uses VE(s', ') > VR(S’,b/l) for all s € S given b' < b, as well as VR(§,b/1) >
VP ($); and the final line uses the fact that ¢, b} is an optimal policy for (s, b1). As {c, b’} is
feasible for by, we have VR (s, by) > VR (s, b1), a contradiction of our premise. O

This implies the following:
Claim 3. An optimal policy for (s, by) involves consuming ¢ for all future periods.

Proof. Suppose b is an optimal debt policy at (s, by). Let S={s eS|VR(s, b)) = VP (s")).
From Lemma 1 Part (ii), we can choose a b} such that S is not empty. From the previous claim,
for any s’ € S, VR(s/, b)) is flat in the neighborhood below b} . Hence, there exists a b’ < b} such
that VR(s',b') = VR(s/, b}). This replicates the initial scenario, and hence ¢ = in state (s', b))
for s’ € S. From Lemma 2, this implies b} <0.Lemma | Part (i) states that VR (s, b}) > VL (s')
for all s € S, hence S=Ss. Thus, for all s’ € S, we can repeat the above arguments to establish
that at (s’, b}) the government consumes ¢ and issues b| such that VR, bY) is flat in any
state s” following s’. Iterating forward, ¢ is the optimal consumption plan for all future periods
following (s, b1). O

Collecting results, under the premise, consumption is ¢ for all periods following initial state
(s, b1). However, by Lemma 2, this requires b; < —A(s), which generates a contradiction to the
lemma’s “if” statement. Hence, for all b > —A(s), the function VR (s, b) is strictly decreasing.

A.5. Proof of Lemma 5
Consider a (so, vo) € S x V.

If vo =V, then to satisfy constraint (4) from problem (B), it is necessary to set ¢ = ¢ and
VR(s’,b') =V forall s’ € S. This requires that ¥’ < —A(s’) < 0 for all 5. Given that ' < 0, it is
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then optimal, to set b’ = minsreg{—z(s’ )} =(C—- X)R /(R — 1), where the last equality follows
from (3). The objective is then

B(so, V) =y(s0) — ¢+ @ —y) = —A(s0) = B(s0, V),

R—-1
where the last equality follows from Lemma 2. _

Now consider vg < V. From Lemmas 2 and 4, there exists a unique B(sg, vg) = by < —A(sp)
such that VR (sg, bo) = vo.

First, we show that B(sg, vy) < é(so, vg). Let co and b(’) be an associated optimal policy to
problem (G’). Note that the policy (co, b’o) satisfies (4) of problem (B), as it delivers the value vy.
The budget constraint of problem (G’) implies that

B(s0. v0) =bo < y(s0) —co+ R™' |:]1{b6§0} + L0 > 77(5/|S0)ﬂ{vR(s/,b()>sz(s/)}:| by
s'eS

< B(s0, v0),

where the last inequality follows from the fact that (co, b6) is feasible in problem (B).

Second, we show that B(sg, vg) = é(so, vg). To show this, consider a situation in which

B(sg, vg) < E(so, vo). Then, there exists (Cg, 136), a policy in problem (B) that delivers some
objective l;o > B(s0, vo) = bo. Rearranging the objective in (B) evaluated at the policy, we have

AL A -1 R R / R i/
Co=y(s0) —bo+R [1%<0} + 100 QTG |SO)1{VR(shh5>>VD(s’)}} by
s'eS

-1 R R / R 7/

< y(s0) —bo+ R [1 <o) T Ligp-0p 2 TG ls0)1 {VR(S,,bg,mD(s,)}} by, (16)
s'eS

where the second line follows from bo = B(so, v()) > bp. Note that (16) implies that the budget

constraint of problem (G”) holds for state (so, bo) {¢o, b’} is feasible and delivers value vy.

Hence, V& (s, bo) > vy = VR(s0, bo). By monotonicity of VR, bo < by, a contradiction.

A.6. Proof of Lemma 6

Let V& be an equilibrium value function with inverse B. We need to show that (T’ B)(s, v) =
B(s,v) forall (s,v) €S x V.

First we show that T B > B. Consider a state (sg, vg) € S x V. Note that the constraint set of
problem (B) is non-empty (for example, set b’ = ming{ —A(s)) <Bandletce [c, ] be such
that (4) is satisfied).

Let (co, b6) be an element of the constraint set in problem (B) given that state. For each s’ € S
such that VR (s’, b)) > VP (s"), define wo(s') = VR (s’, bp).

This implies wo(s") € [VP(s”), V] and thus wo(s”) € V by Assumption 3. For all other s’ such
that VR(s', by) < VP(s”), we let wo(s’) be arbitrary elements of (u(c) + BV, VP (s)).

We now argue that the choice (cy, bo, {wo(s")}) satisfies the constraint set of problem (T)
when f = B given state (s, vg).
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For constraint (7), note that

by = B(s', wo(s")) if by > —A(s)
by < B(s', wo(s")) if by < —A(s)

for all s’ such that w(s’) > VP (s'); hence, constraint (7) is satisfied. Note that (cg, by, {wo(s")})
satisfies constraint (6) with equality.

Hence, for any (sg, vg) € S x V, and for any feasible choice, (co, b(/)) in problem (B), there
exists a policy, (co, b6, {wo(s")}) that is feasible in problem (T) given the state (sg, vo) when
f = B and attains the same value for the objective. It follows that (7 B)(s, v) > B(s, v) for all
s,veSxV.

Next, we show that TB < B. Given (sg,vg) € S x V, consider a feasible choice (co, bé,
{wo(s")}) of problem (T) (that is, it satisfies the constraints of that problem) when f = B. Let us
consider a policy (¢, ') for problem (B). We now check that we can construct a feasible policy
where b’ = by and ¢ > ¢o.

(i) Constraint (5) holds with b{: by < B.
Note that for any s’ such that wo(s") > VP (s’), constraint (7) implies by < B(s", wo(s")) <
B. If wo(s’) < VP(s') for all s’ € S, constraint (7) is not relevant and any b;, > 0 delivers
the same objective; hence, we can consider an arbitrary bE) < B.
(ii) There exists a ¢ € [c, co] such that (¢, b)) satisfies (4) with equality.
First, consider s’ € S such that w(s") > VP (s"). For all such states, constraint (7) evaluated
at f = B implies b(s") > B(s’, w(s")) > b). Now, VR(s’, B(s', w(s"))) < VR(s', b)), as VR
is monotonic. Using that B is the inverse of V&, it follows that w(s") < VE(s’, by) fors’ € S
such that w(s) > VP (s). This implies
u(co) + Y mw(s'ls) max{VR(s', by), VP (s))
s'eS
> u(eo) + y_ 7 (s'ls) maxfw(s"), V" (s")}
s'eS
= Vo
>u(c) + BV
>u(0) + Y w(s|s)max{VE(s', by), VP (s)
s'eS

where the third line follows from (6) and the fourth line from vy € V. Hence, by continuity
of u, there exists ¢ € [c, cg] such that

vo=u(@) + Y_w(s'ls) max{VE(s’, b, VP (s")
s'eS
A similar argument guarantees the existence of such ¢ € [c, cg] when w(s") < VP (s’) for all

s'eS.

Hence, (c, b(’)) satisfies the constraints in problem (B) for (sg, vo). From the optimization in
problem (B),
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B(so, vo) > y(so) —¢+ R™! |:1{b6§0} + Ly ~0) Z JT(S/|S)ﬂ{vR(s/,bg))sz(s/)}:| by
s'eS

> y(s0) —co+ R~ [1%50} + Ly ) Z n(s/|s)]l{w(s/)zvo<x/)}:| by,
s'eS
The final line is the objective in (T). As (co, b6, {wo(s")}) was arbitrary, we have B(sg, vp) >
(T B)(s0, vo)-

A.7. Proof of Proposition 1: existence

For the proof of existence, note that because T is a contraction mapping, it has a fixed point;
which we denote by f*. The way we proceed is to use the inverse of f* to construct a candidate
equilibrium value function, V3, and a price function, ¢*. For simplicity, we define V = u(c) +
,BV, sothat V=[V, V.

Let g denote the objective of Problem (T):

gle,b' {wHs) =y(s) —c+R™! |:1{b/50} + w0 ) ﬂ(S’IS)]l{w(s’)sz(s')}} b'.

s'eS

Given a bounded f : S x V — R, consider the following constraint set I'(s, f):
L(s, f)

= {v, c, b, {w(s))

u(e)+ Y _m(s'ls) max{w(s), VP (s} —v =0,
Liysh=vosy (F(s" w(s)) —b') = 0foralls" €S,

veV,w(s) e [VP(s), VIU (V) forall s’ €S, c €[0,2], 6" e [f, F1U {0},

for some V;, € (V, miny VP (s)), and where f =inf,cs yev f(s,v) and f = sups ey (s, ).
The set I'(s, f) represents the constraint set of Problem (T) with two modifications. The

first is that we have replaced the constraint that w(s’) € V with the tighter constraint w(s’) €

[VP(s),VIU{VL} C V for Vi < VP(s). This modification has no effect on Problem (T), as

values of w(s’) such that w(s’) < VP(s) do not affect the other constraints nor the objective

function. The second modification is to restrict &’ to be zero or to lie between the minimum and

maximum of f (s, v). This is without loss of generality, as if the promised values are such that
constraint (7) needs to hold for some s’, then it requires b’ < 7, and it is never optimal to choose

b’ < f.1If the promised values are such that constraint (7) does not need to hold for any s’, then

Problem (T) places no restriction on 4’ and b’ = 0 is optimal.
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The above implies that problem (T) can be rewritten as
Tf(s,v)= max g(c,b, {w(sHs) ()
e.b’ fw(s)}

subject to: (v, ¢, b, {w(s")}) e T'(s, f).

We can now state the following results:

Claim 4. For any bounded f, s € S and vy € V, the set {(v, c,b’, {w(s")}) € T'(s, f)|v =g} is
non-empty.

Proof. Note that the vector {v =vg,c =¢,b" = f,w(s’) = V forall s’ € S} satisfies all the
constraints in I'(s, f), proving the claim. O

Claim 5. If f : S x V — R is bounded and upper-semicontinuous, then I'(s, f) is closed and
bounded for all s € S.

Proof. Let p, € R3*ISI where |S| denotes the number of elements in S. We take Pn =
(Un, cps b;“ {wn(s/)}) elGs, ).

Consider now a convergent sequence {pn},‘;"1 with p, € I'(s, f) for all n € {1,2,3,...}.
Note that I'(s, f) is a bounded subset of R3*+ST and thus the sequence has a finite limit p* =
limy, 00 pn. Let v*, ¢*, b*, {w*(s")} denote the individual elements of the limit. Our goal is to
argue that p* € ['(s, f).

First note that

v eV, w*(s) e [VP(s), VIU{V ) foralls' €S, c* €[0,¢), b* € Lf. F1U{0},

as all the respective sets are compact.
Given that u(c)+ B Y m(s'|s) max{w(s’), VP (s")} — v is a continuous function of ¢, {w(s")}
and v, it follows that

uc*)+p Zn(s’|s) max{w*(s"), VP(s")} —v* >0

by passing the limit to a continuous function.

Turning to (7), consider now a given s’ € S. There are two possibilities to consider: either
w*(s") = Vi or w*(s") € [VP(s), V]. We treat each case separately.

Case 1: w*(s’) = V. In this case, the constraint 1« yn e (f (s, w*(s")) — b*) = 0 is
automatically satisfied as w*(s”) < VL (s").

Case 2: w*(s') = [VP(s), V]. In this case, there must exists a finite N such that w,(s") €
[VDP(s),V]foralln > N (as VP(s) > V). Note that for all n > N, we have that

f(S/, wn(s/)) —b, > 0.

Given that f is upper-semicontinuous, the left-hand side of the above is an upper-semicontinuous
function in (b’, w(s")). It follows that:

f(s", w*(s")) —b* >limsup f(s', w,(s")) — b, > 0.

Hence, (7) is satisfied in the limit for s” € S. This argument can be repeated a finite number of
times for all s' € S. Thus, we have shown that p* € I'(s, v). And hence I'(s, v) is closed. O
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Note also that the objective g is upper-semicontinuous, and thus:

Claim 6.If f : S x V — R is bounded and upper-semicontinuous, then the supremum in
Tf (s, v) is achieved for all (s,v) € S x V.

Proof. Note that the subset of I'(s, f) such that v is constant is non-empty, bounded and closed
by Claims 4 and 5. Given That g is an upper-semicontinuous function on ¢, b, {w(s")}, g attains
a maximum in a non-empty compact set. [

Let F be the set of functions such that f € F if and only if: (i) f is bounded and upper-
semicontinuous on S x V; (i) f is a weakly decreasing function in v € V; (iii) f(s, V) = —A(s)
forall s € S; and (iv) f(s, V) < B forall s € S. Let Fy denote the subset of F that contains only
strictly decreasing functions of v. Note that F is closed. Then,

Claim 7. The operator T maps F into Fy.

Proof. Let f € F. We have already established (Lemma 7) that T f is bounded.

Strict monotonicity. Fix s € S. Consider v; and vy suchthat V <v; < vy <V forvo—v; <48
where 0 < 8 < u(c) — u(0). Let {c;, bl’., {w;(s")}}, i = 1,2, denote allocations that achieve the
supremum for Problem (T°) at (s, v;), i = 1,2, respectively; the existence of such optimizing
allocations was established in Claim 6.

Note that ¢; € [c, c]. The upper bound follows from the constraint set. The lower bound
follows from Assumption 3, as if ¢; < ¢, then u(c;) + By w(s'|s) max{w; (s"), VP (s} <
u(c) + BV =V, violating promise keeping as v; € V = [V, V1.

Define ¢ to be such that u(¢;) — vi + vy —u(cy) =0. Let H(c) = u(c) — v1 + vy — u(c).
The function H is continuous and strictly increasing in ¢ € [0,¢]. H(c2) = v2 — v; > 0, and
H0)=u(0) —u(c2) +v2 —v; <u(0) —ulc) + § < 0. Hence, there exists a unique ¢; € (0, c2)
such that H(¢;) =0.

For problem 7 f (s, vy), the allocation (vy, ¢1, bé, {wa(s")}) € T'(s, f), and is a feasible choice.
Hence, we have:

Tf(s,vi))=Tf(s,v2)+c2—¢c1>Tf(s,v2),

where the second inequality follows from ¢; < ¢». Thus T f (s, v) is strictly monotone in v,
given s.

Upper semi-continuity. Consider a given s € S and take a monotonically increasing sequence
{vn},‘f: | that converges to vy from below. We want to show that limy,—, o0 T f (s, v,) = T f (s, v9).
Establishing left-hand continuity is sufficient to establish upper semi-continuity as 7 f is strictly
decreasing in v.

For each n > 1, let (cp, b}, {w,(s")}) denote optimal policies associated with problem (T")
evaluated at (s, v,) given f, and let p, = (vy, cn, b}, {wn(s")}). Note that p, € I'(f, s). Given
that T"(f, s) is a compact subset of RIS, by the Bolzano-Weierstrass theorem, the sequence
{pn};2, contains a convergent subsequence {p,,}°, in I'(s, f). Let p* € I'(s, f) denote its
limit, and let v*, ¢*, b* and {w*(s”)} denote the respective elements of p*. Note that v* = vy, as
the sequence of {v,} converges to vg.

Let g(pn) denote g(cy, b, {w,(s")}). Note that Tf (s, vo) > g(p*) as p* € I'(s, f) with
v = vg but may be suboptimal. Given that g is upper-semicontinuous, it follows that g(p*) >
limsup;_, o, g(py;). Using that g(p,) = T f (s, v,), we have that
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Tf(s.vo) = g(p*) = limsup Tf (s, vp,) = lim T'f (s, vy)
i—>00 n—oo
where the last step follows from the monotonicity of the sequence {v,} and the monotonicity of
T f with respect to v.
Also, as v, <wvg and T'f is decreasing, we have that

Tf(s.v0) = Tf(s.v0) = lim Tf(s,v,) = Tf (s, v0)

Taken together, we have that lim,_, oo T f (s, v,) = T f (s, vo) for any increasing sequence {v,}
and thus, 7' f is upper-semicontinuous in v.

The value at V. We now show that if f(s, V) = —A(s) forall s € S, then Tf (s, V) = —A(s)
forall s € S.

Fix s € S, and consider the problem (T”) for v = V. It follows from the (6) that u(c) = ¢ and
w(s") =V forall s’ € S. As a result, we have that

Tf(s,V)=sup{y(s) -+ R 'b')
b/
subjectto b’ < f(s', V) = —A(s') forall s’ € S.

Note that the constraint on »’ binds with equality at an optimum. Using the definition of A(s),
we therefore have

Tf(s,V)=y(s)—c+ R} min(—A(s")) = — |:E —y(s) + %} =—A(s)

Repeating this argument for all s € S, we complete the proof that 7 maps F into Fj.

The value at V. Note that, using that f is decreasing in v:
Tf(s,v) < y(s) + R~ max {maé(f(s’, V), 0} <y+R'B=B
s'e

Where the first inequality follows from noticing that if f(s’, V) <0 for all s’ € S, then an upper
bound to the value T f (s, v) is y(s). And, if there is at least one s” € S such that f(s, V) > 0,
then an upper bound to the value is y(s) + R~ ! maxycg f(s’, V). The second inequality follows
from the B >0and f(s’,V)<B. O

As the contraction T maps elements of the closed set F' into its subset Fp, it follows then that
f* € Fp. Let f* denote the fixed point of the dual operator (T). Let

SB={(s,b)|s€S, and b < f*(s,V)}.
Define the following generalized inverse function v*:
v*(s, b) = max{v € V| f*(s, v) > b},

for (s, b) € SB. Note that the set {v € V| f*(s, v) > b} is non-empty as f*(s, V) > b (given that
[ is strictly decreasing), is bounded, and is closed (by upper-semicontinuity of f*). Hence, v* is
well defined. In addition, it is continuous on SB. Note also that v*(s, b) = V forall b < —A(s).

Our candidate equilibrium price schedule is then constructed from the set SB and the inverse

v*:
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R! S ifb <0,

as=1"_ , .
R ZS’ES 7T(S |S)]l{(s’,b)€SB and v*(s',b)>V D (s")} 5 OtherWlSC,

which is defined for all (s, b) € X =S x (—o0, B]. Note also that ¢*(s, b) € [0, 1/R).

Given this price function, let X f.4s(s) and BF(s) be as in (2). Let R(b) = {s|(s,b) €
SB and v*(s, b) > yD (s)}. Then, we then define the repayment value function, VI‘; (s, b), as fol-
lows:

Vi(s.b)=  sup u@)+p | Y. w6’ b+ Z 7 (s'19)VP (s
cel0,lb'<B S'eR(D) S'ER(D)
(17)
subject to:
c<y()—b+q*(s,b)b

forall b € Xfeq5(s); and Vi (s, b) = VNE otherwise.
We have the following result:

Claim 8. The function Vg (s, b) < V and is weakly decreasing in b € X feas(s) given s € S

Proof. The bound follows from maximal consumption ¢ = ¢ and maximal continuation value
V > v*(s,b) all (s,b) € SBand V > VP (s) for all s € S. The fact that V is weakly decreasing
in b follows from the fact that b only appears in the budget set, and a lower b weakly expands
it. O

Claim 9. The function V(s, b) = v*(s, b) for (s,b) € SB.

Proof. We now argue that V3 (s, b) = v*(s, b) for (s, b) € SB. Towards a contradiction, consider
an (so, bo) € SB such that Vg (so, bo) # v*(s0, bo).

Note that there exists an optimizing allocation for the dual problem (T") evaluated at f*. Let
{co, by, {wo(s)}} be an optimal consumption, debt choices, and promised values associated with
(so, vo) where vy = v* (s, bo).

We now show that the allocation ¢y, b6 is feasible for problem (17).

e First, we show that we can restrict attention to by, < B.If by > B, then w(s') < VP (s') for
all s’ € S given that f* € F (that is, there is no wo(s’) such that f*(so, wo(s’)) > B). Hence
setting b, = 0 is also optimal. That is, {cg, b’ =0, {wo(s’)}} is an optimal allocation.

e Note that if b <0, then

bo < f*(s0, v0) = y(s0) — co + R~ by

and thus, the choice of ¢, b, is feasible for problem (17) as g*(s, bj)) = R7L.
e For B > b), > 0:
— We first show that (s, b(,) € SB for all s’ such that wo(s") > VP (s’). This follows because
0 <by < f*(s",wo(s") < f*(s', VP(s")) < f*(s’, V), where the first inequality is (7),
and the remaining two follow from monotonicity of f*. And thus (s', b)) € SB.
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— Now note that evaluating the objective at an optimum:

bo < f*(s0, v0) = g(co. by {wo(s)}s0) = y(s0) —co+R™" D 7('150) L 51210 (57 b0
s'eS

— From (7), we have f*(s’, wo(s")) > by, for s € S such that wo(s") > VP (s"). Therefore,
by definition of v*, we have v*(s(, b)) > wo(s’).

— Next we show that v*(s), b;) = wo(s"). To see this, towards a contradiction suppose
that v*(s”, b)) > wo(s’) > VP (s"). Then, in the original dual problem, choosing w(s’) =
v* (s, b6) satisfies (7), strictly relaxes (6) and weakly increases the objective. This implies
that there exists a v’ > vg for which the value in the dual problem, f*(sg, v’) is weakly
higher than f*(so, vo), contradicting strict monotonicity of f*. Hence, v*(s’, b)) = wo(s")
for all s’ such that wo(s’) > VP (s’), and therefore:

by < f*(s0, v0) = y(s0) —co + R~ Z n(s/lso)]l{v*(s’,b())sz(s/)}b(’)

s'eS

= y(50) — co + g™ (s0, by)by.

The above implies that {cy, bé} is a feasible choice for Problem (17). Therefore, V& (so, bo) >
v*(s0, bo) for all (sg, bg) € SB.
We now argue that VR (50, bo) = v* (50, bo) for all (so, by) € SB.

e Towards a contradiction, consider an (so, bg) € SB such that V > Vi (s0, bo) > v*(so, bo).
Let us redefine cg and b(/) to denote a feasible allocation for problem (17) that delivers a value
strictly higher than v*(so, bo). Set wo(s") = v*(s’, byy) for all s” € R(b;)) and set wo(s") = Vi
for all s ¢ R(by).

e The allocation {co, bo, {wo(s")}} satisfies (7) as f*(s", wo(s")) > by, for wo(s’) > VP (s").

e Given that {cg, b6} delivers a value in problem (17) strictly higher than v* (s, bg), we have
that:

v* (50, bo) < u(co) + B Zmax{v*(s’, by), vP (s}

=u(co) + B Zmax{wo(s’), VP =0<V.

Note that the objective of (T”) evaluated at this allocation is

g(co, by, {wo(s)}Is0)

-1
=y(so) —co+ R |:]1b650 + Ly 0 Z 7T(S/|SO)ﬂ{u*(s’,bg)zvn(s’)}] by

s’'eS
= y(s0) — co + g™ (s0, by)by > bo,

where the last step follows from the budget constraint of problem (17).
The allocation {D, co, by, {wo(s")}} € T'(s, f*) and delivers a value in Problem (T") weakly
higher than bg. Given v € (v*(so, bo), V1, this violates the strict monotonicity of f*.

Hence Vy (s, b) =v*(s, b) for (s,b) € SB. O
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We now argue that {Vg, g™} is an equilibrium:
Claim 10. The functions Vi and q* defined above constitute a Markov equilibrium.

Proof. First note that if V};(s, b) > VP (s), then (s, b) € SB and v*(s, b) > VP (s).

This follows from the monotonicity of Vz (s, b) with respect to b and that Vz (s, f*(s, V)) =
vi(s, frs, V) =V < VP (s); where the first equality follows from Claim 9; and the second
equality follows from the strict monotonicity of f* and the definition of v*. Hence, we have that

R(b) = {s|(s, b) € SB and v*(s, b) > VP (s)}
= {s|V(s,0) = VP (5)}.

This implies that the pricing equation for ¢* solves (BE) given V. Similarly, notice Vy solves
(G) given g™.

Finally, we show that the supremum is achieved. Note that because v*(s, b) is continuous in
b < B, the objective function of Problem (17) is continuous in &’

Given that SB is closed, and that v* is continuous, it follows that ¢*(s, b) x b is an upper-
semicontinuous function for b < B. Hence the constraint set of Problem (17) is bounded and
closed (if non-empty). Thus, problem (17) admits a maximizer. O

Appendix B. The primal is not a contraction
Here we provide a simple example that shows that the operator defined by the primal problem

(G) is not a contraction mapping.
Consider the original primal problem, (G). Define the primal operator, Tp to be

— / ARG D,/
Tpv(s,b) _cer[g%)]ib, {u(c) + B Z (s’ |s) max Hv(s ,b), V7 (s )}} (18)
s'eS
subject to:

c< y(S) —b+ b/R_l |:]l{b’§()} =+ ]l{b’>0} Z 7T(S/|S)l{v(sr’b/)sz(S/)}i| s

s'eS
b <B,

where Tpu(s, b) = vV if the constraint set is empty. A Markov equilibrium value function is a
fixed point of Tp under the sup norm: ||x|| = supy , |x(s, b)|.

For the example, we narrow attention to the case with only two states, where S = {s1, 52} with
an iid distribution and where 7 (s1) = p. We impose that the endowment is constant, y(s) =y
foralls € S;and VP(s;) =P > VP (sy) = vP.

Consider two initial value function guesses: vi(s, b) = vP — € for all s,b and vy(s, b) =
vP + € forall s, b; for 72 — vP > € > 0. Note that ||vy — vy | =2€ > 0.

Given that the two value functions are assumed to be independent of the debt level; it is possi-
ble to compute the solution to the primal above. In particular, for v;, we have that Tpv; (s, b) =
u(min{y — b, ¢}) + B(pv? + (1 — p)vP) for b < y; and Tpvi (s, b) = vNF for b > y. Similarly,
for v, we have Tpva (s, b) = u(min{y —b+ R~'(1 — p)B,¢}) + B(pv” + (1 — p) (P +¢)) for
y—b+R7'(1 — p)B>0;and Tpua(s, b) = vNF otherwise.
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Now, consider the difference between Tpv; and Tpv, evaluated at b = 0:

Tp(v2)(s,0) — Tp(v1)(s, 0) = u(min{y + R~ (1 — p)B,e}) —u(y) + (1 — p)e >

Note that there exists an € > 0 such that € < m(u (min{y + R1(1- p)B. ) —u(y)). As
a result,

Tp(v2)(s,0) — Tp(v1)(s,0) > 2¢

It follows then that

TP (v2) = Tp (D)l = |Tp(v2)(s,0) — TP (v1)(s,0)| > 2¢ = [jva — vi|

Hence, Tp is not a contraction.
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