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This supplementary document collects two results. First, we cover some findings

regarding the possibilities for money burning with three types. Second, we present a

result on how simple minimum savings allocations can be improved upon if Assump-

tion A in the paper fails.

1 Money Burning with Three Types

In this section, we study the optimality of money burning when there are only three

possible shocks. Our main result concerns the case when the probability of the middle

shock vanishes. We also report some numerical findings for higher values of pm.

Let Θ = {θl, θm, θh} with θl < θm < θh. The problem is given by

max
∑

s∈{l,m,h}
[θsU(cs) + W (ks)]ps

subject to

cs + ks ≤ y for s ∈ {l,m, h}
θlU(cl) + βW (kl) ≥ θlU(cm) + βW (km)

θmU(cm) + βW (km) ≥ θmU(ch) + βW (kh)

cl ≥ cm ≥ ch

Let (c∗s, k
∗
s) represent the first best allocation for given s, which is independent of the

probabilities (ph, pm, pl).

The full parameters of the problem are (β, θl, θm, θh, ph, pm, pl). To state our
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result we consider all families of problems that are indexed by pm as follows. Let

ph(pm) and pl(pm) be continuous functions such that ph(pm) + pl(pm) + pm = 1 with

limpm→0 ph(pm) ∈ (0, 1). The following conditions guarantee the optimality of money

burning for small enough pm.

Proposition 1. There exists a p̄m > 0 such that the optimal allocation of the problem

with parameters (β, θl, θm, θh, ph(pm), pm, pl(pm)) has cm + km < y for 0 < pm ≤ p̄m if

(i) β < θl/θm

(ii) β > β∗, i.e. the first-best allocation is such that

θlU(c∗l ) + βW (k∗l ) > θlU(c∗h) + βW (k∗h)

(iii) the (ĉ, k̂) defined by

θlU(c∗l ) + βW (k∗l ) = θlU(ĉ) + βW (k̂) (1)

θmU(ĉ) + βW (k̂) = θmU(c∗h) + βW (k∗h) (2)

is such that ĉ + k̂ < y.

Conversely, if any of the inequalities in conditions (i)–(iii) are reversed, then money

burning cannot be optimal for small enough pm (i.e. there does not exist such a p̄m).

Proof. An allocation (cs, ks) with cl > cm > ch is optimal if and only if it is feasible

and there exists non-negative multipliers such that the first-order conditions hold:

(pl + µl)θlU
′(cl) = λl (3)

(pl + βµl)W
′(kl) = λl (4)

(
pm − θl

θm

µl + µm

)
θmU ′(cm) = λm (5)

(
pm − βµl + βµm

)
W ′(km) = λm (6)

(
ph − θm

θh

µm

)
θhU

′(ch) = λh (7)
(
ph − βµm

)
W ′(kh) = λh (8)

Where λs are the Lagrange multipliers on the resource constraints, and µs are the mul-

tipliers on the incentive constraints. In addition, we require the usual complementary

2



slackness conditions, i.e. that the multipliers are zero if the associated inequalities

are strict.

For the sufficiency part, we proceed by explicitly constructing an allocation as a

function of the probability pm. We then show that, for low enough pm, the constructed

allocation is optimal and has money burning. The allocation we construct satisfies

the first-order conditions (3)–(8), has the resource constraints binding for the low and

high types, and imposes the complementary slackness condition that λm(pm) = 0.

Using (5) and (6) we can now solve for the multipliers

µl(pm) =
1− β

β

1

1− θl/θm

pm (9)

µm(pm) =
1

β

(
θl/θm − β

1− θl/θm

)
pm (10)

which are positive since θl/θm−β ≥ 0 and β < 1. Either equation (3) or equation (4)

imply that λl(pm) is strictly positive. Since µ(pm) goes to zero as pm goes to zero,

both equation (7) and equation (8) require that λh(pm) be strictly positive for small

enough pm.

Hence, for small enough pm we can rearrange the first-order conditions (3), (4),

(7) and (8) as

θlU
′(cl(pm))

W ′(kl(pm))
=

pl(pm) + βµl(pm)

pl(pm) + µl(pm)
, (11)

θhU
′(ch(pm))

W ′(kh(pm))
=

ph(pm)− βµm(pm)

ph(pm)− θm

θh
µm(pm)

, (12)

which together with the binding resource constraints cl(pm)+kl(pm) = y and ch(pm)+

kh(pm) = y can be solved uniquely for cl(pm), kl(pm), ch(pm) and kh(pm), and are

continuous functions of pm.

Since µl(pm), µm(pm) > 0, we solve for cm(pm), km(pm) from the binding incentive

constraints

θlU(cl(pm)) + βW (kl(pm)) = θlU(cm(pm)) + βW (km(pm)), (13)

θmU(cm(pm)) + βW (km(pm)) = θmU(ch(pm)) + βW (kh(pm)). (14)

Note that cm(pm) and km(pm) are continuous in pm.

Equations (9)–(10) imply that as pm → 0 we have that µl(pm) → 0 and µm(pm) → 0.

3



Equations (11)–(12) imply that as pm → 0,

(cl(pm), kl(pm)) → (c∗l , k
∗
l ) (15)

(ch(pm), kh(pm)) → (c∗h, k
∗
h) (16)

since limpm→0 ph(pm) > 0 and limpm→0 pl(pm) > 0. Continuity of (cm(pm), km(pm))

implies that, as pm → 0,

(cm(pm), km(pm)) → (ĉ, k̂),

so that for sufficiently low pm there is money burning. Finally, part (ii) and (iii) imply

that c∗l < ĉ < c∗h, so that indeed, for small enough pm, the monotonicity constraints

are slack: cl(pm) < cm(pm) < ch(pm).

Summarizing, for sufficiently low pm the constructed allocation is feasible, the

monotonicity condition is slack, and all the first-order conditions are met; hence, it

is optimal.

The converse statement follows from the fact that the allocation we constructed

above is the only one consistent with optimality and the hypothesis of money burning

for sufficiently small pm. Hence, if condition (i) is reversed then µm(pm) is strictly

negative; if condition (ii) is reversed then, since the allocation must satisfy (15)-(16),

it cannot be incentive compatible for low pm; if the inequality in condition (iii) is

reversed then, since the allocation must satisfy (1), the resource constraint for the

middle type cannot be met for small pm. Q.E.D.

We have also verified numerically that money burning is possible for high enough

pm for cases when condition (ii) in the previous proposition is violated. A concrete

example yielding money burning has the following parameter values:

β = .7, θh = 1.6, θm = 1, θl = 0.8, pl/ph = .7, y = 1

with U(c) = −c−1. This example is illustrated in Figure 1, which was produced by

the Matlab code named burn.m provided in Appendix B.1

1This code produces two graphs showing the regions of pm where money burning can be possible.
The first graph plots the allocations of consumption given to each of the three types. The second
one shows the expenditure allocated to the middle type cm + km, as in the figure reproduced here.
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Figure 1—Total expenditure for middle type, cm + km, as a function of the
probability pm.

2 Drilling Result

In this section we show that, for the model with a continuous distribution of types, if

Assumption A is violated we can improve upon the proposed minimum savings allo-

cation described by Proposition 3 in the paper. The improvement involves removing

(“drilling”) intervals previously offered.

Suppose we are offering the unconstrained optimum for some closed interval [θa, θb]

of agents and we consider removing the open interval (θa, θb). Agents that previously

found their tangency within the interval will move to one of the two extremes, θa or

θb. The critical issue in evaluating the change in welfare is counting how many agents

moving to θa versus θb. For a small enough interval, welfare rises from those moving

to θa and falls from those moving to θb.

Since the relative measure of agents moving to the right versus the left depends on

the slope of the density function this explains its role in assumption A. For example,

if f ′ > 0 then upon removing (θa, θb) more agents would move to the right than the

left. As a consequence, such a change is undesirable. The proof of the next result

formalizes these ideas.

Let θind ∈ [θa, θb] be the agent type that obtains the same utility from reporting θa

5



or θb. We find it more convenient to state the next result in terms of the consumption

allocation c(θ) and k(θ).

Proposition 2. Suppose a feasible allocation has c(θ) = cflex(θ) and k(θ) = kflex(θ)

for θ ∈ [θa, θb], where θb ≤ θp. Then if G(θ) is decreasing on [θa, θb] the alternative

allocation

c̃(θ), k̃(θ) =





c(θ), k(θ) for θ 6∈ [θa, θb]

c(θa), k(θa) for θ ∈ (θa, θind)

c(θb), k(θb) for θ ∈ [θind, θb)

increases the objective function and remains feasible.

Proof. Suppose that we are offering a segment of the budget line between the tangency

point for θL and that of θH , with associated allocation cL and cH . Define the θ∗ that

is indifferent from the allocation cL and cH then θ∗ ∈ (θL, θH) for θH > θL. Upon

removing the interval θ ∈ (θ∗, θH) types move to cH and θ ∈ (θL, θ∗) types move to

cL allocation.

Let ∆(θH , θL) be the change in utility for the principal of such a move (normalizing

income to y = 1 for simplicity)

∆(θH , θL) ≡
∫ θH

θ∗(θH ,θL)

{θU(c∗(θH)) + W (y − c∗(θH))}f(θ)dθ

+

∫ θ∗(θH ,θL)

θL

{θU(c∗(θL)) + W (y − c∗(θL))}f(θ)dθ

−
∫ θH

θL

{θU(c∗(θ)) + W (y − c∗(θ))}f(θ)dθ

where the function c∗(θ) is defined implicitly by

θU ′[c∗(θ)] = βW ′(y − c∗(θ)) (17)

and θ∗(θH , θL) is then defined by

θ∗(θH , θL)U(c∗(θH))+βW (y− c∗(θH)) = θ∗(θH , θL)U(c∗(θL))+βW (y− c∗(θL)) (18)

Notice that ∆(θL, θL) = 0.

The partial of ∆(θH , θL) with respect to θH can be expressed as:

∂∆

∂θH

(θH , θL) = S(θH ; θ∗)
U ′(c∗(θH))

β

∂c∗(θH)

∂θH
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where S(θ; θ∗) is defined by,

S(θ, θ∗) ≡ (y − β)(θ − θ∗)θ∗f(θ∗)−
∫ θ

θ∗
(θ − βθ̃)f(θ̃)dθ̃

Since U ′(c∗(θH)) > 0 and ∂c∗(θH)
∂θH

> 0, then sign(∆1) = sign(S(θH , θ∗)). This result

is shown in Appendix A.

We only need to sign S(θH , θ∗). Clearly, S(θ∗, θ∗) = 0. Taking derivatives we also

get that
∂S(θ, θ∗)

∂θ
= [1− β]θ∗f(θ∗)− (1− β)θf(θ)−

∫ θ

θ∗
f(θ̃)dθ̃

Notice that
∂S(θ, θ∗)

∂θ

∣∣∣∣
θ∗

= 0

∂2S(θ, θ∗)
(∂θ)2

= −(2− β)f(θ)− (1− β)θf ′(θ)

Note that ∂2S(θ, θ∗)/(∂θ)2 does not depend on θ∗, just on θ. It follows that

sign

(
∂2S(θ, θ∗)

(∂θ)2

)
≤ 0

if and only if
θf ′(θ)
f(θ)

≥ −2− β

1− β
(19)

That is, if A holds. Integrating ∂2S(θ, θ∗)/(∂θ)2 twice:

S(θH , θ∗) =

∫ θH

θ∗

∫ θ

θ∗

∂2S(θ̃, θ∗)

(∂θ̃)2
dθ̃dθ

Thus S(θH , θ∗) ≤ 0 if A holds.

This implies then that ∆1(θ, θL) ≤ 0 for all θ ≥ θL if assumption A holds; and

∆(θH , θL) =

∫ θH

θL

∆1(θ; θL)dθ

so that
θf ′(θ)
f(θ)

≥ −2− β

1− β
⇒ ∆(θH , θL) ≤ 0 ; for all θH and θL

and clearly θL ∈ arg maxθH≥θL
∆(θH , θL). In other words if assumption A holds then

punching holes into any offered interval is not an improvement.
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The converse is also true: if A does not hold for some open interval θ ∈ (θ1, θ2)

then the previous calculations show that it is an improvement to remove the whole

interval. In other words,

(θ1, θ2) ∈ arg max
θL,θH

∆(θH , θL)

s.t. θ1 ≤ θL ≤ θH ≤ θ2

This concludes the proof. Q.E.D.
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Appendix

A Lemma on Derivative

Lemma. The partial of ∆ (θH , θL) with respect to θH can be expressed as:

∂∆

∂θH

(θH , θL) = S (θH ; θ∗)
U ′ (c∗ (θH))

β

∂c∗ (θH)

∂θH

where S (θ; θ∗) is defined by,

S (θ, θ∗) ≡ (y − β) (θ − θ∗) θ∗f (θ∗)−
∫ θ

θ∗

(
θ − βθ̃

)
f

(
θ̃
)

dθ̃

Since U ′ (c∗ (θH)) > 0 and ∂c∗(θH)
∂θH

> 0, then sign (∆1) = sign (S (θH , θ∗)) .

Proof. We have

∆1 (θH , θL) = [θHU (c∗ (θH)) + W (y − c∗ (θH))] f (θH)

− [θ∗ (θH , θL) U (c∗ (θH)) + W (y − c∗ (θH))] f (θ∗)
∂θ∗

∂θH

+

∫ θH

θ∗(θH ,θL)

{θU ′ (c∗ (θH))−W ′ (y − c∗ (θH))} f (θ)
∂c∗ (θH)

∂θH

dθ

+ {θ∗ (θH , θL) U (c∗ (θL)) + W (y − c∗ (θL))} f (θ∗)
∂θ∗

∂θH

− [θHU (c∗ (θH)) + W (y − c∗ (θH)) f (θH)]

Combining terms,

∆1 (θH , θL) =

(∫ θH

θ∗(θH ,θL)

{θU ′ (c∗ (θH))−W ′ (y − c∗ (θH))} f (θ) dθ

)
∂c∗ (θH)

∂θH

+ {θ∗ (θH , θL) [U (c∗ (θL))− U (c∗ (θH))] + W (y − c∗ (θL))−W (y − c∗ (θH))} f (θ∗)
∂θ∗

∂θH

Now, from (18) we have

θU ′ [c∗ (θ)]−W ′ (y − c∗ (θ)) =

[
β − 1

β

]
θU ′ [c∗ (θ)]

Substituting above
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∆1 (θH , θL) =

(∫ θH

θ∗(θH ,θL)

(
θ − 1

β
θH

)
f (θ) dθ

)
U ′ (c∗ (θH))

∂c∗ (θH)

∂θH

+ {θ∗ (θH , θL) [U (c∗ (θL))− U (c∗ (θH))] + W (y − c∗ (θL))−W (y − c∗ (θH))} f (θ∗)
∂θ∗

∂θH

We also have that from (17),

−θ∗ (θH , θL)

β
[U (c∗ (θL))− U (c∗ (θH))] = {W (y − c∗ (θL))−W (y − c∗ (θH))}

So,

∆1 (θH , θL) =

{[
1

β
− 1

]
θ∗f (θ∗)

}
[U (c∗ (θH))− U (c∗ (θL))]

∂θ∗

∂θH

−
(∫ θH

θ∗

(
1

β
θH − θ

)
f (θ) dθ

)
U ′ (c∗ (θH))

∂c∗ (θH)

∂θH

Differentiating (18) we obtain:

∂θ∗

∂θH

[U (c∗ (θH))− U (c∗ (θL))] = − [θ∗U ′ (c∗ (θH))− βW ′ (y − c∗ (θH))]
∂c∗ (θH)

∂θH

Using the fact that θU ′ [c∗ (θ)]− βW ′ (1− c∗ (θ)) = 0 this implies

∂θ∗

∂θH

[U (c∗ (θH))− U (c∗ (θL))] = [θH − θ∗] U ′ [c∗ (θH)]
∂c∗ (θH)

∂θH

Substituting back the result follows. Q.E.D.

10



B Matlab burn.m Code:

Money Burning with Three Types

function burn

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% computes potential money burning allocation for the 3 type case

% reports allocation and whether or not it satisfies

% auxiliary conditions to be deemed incentive compatible

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% parameterization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% sigma=2, thetal = .8, thetah=1.6, thetam=1, ploverph = .7 betta=.7

% leads to money burning for the middle type for high enough pm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear

global betta sigma thetal thetah thetam lamda y p

% parameters

ploverph = .7; %ratio of pl over ph

ppmm=(.001:.005:.999)’; %possible values for pm

sigma = 2;

thetal = .8;

thetah = 1.6;

thetam = 1;

betta = .7;

y=1;

% first best allocation

cl_fb = y*((thetal)^(-1/sigma)+1)^(-1);

ch_fb = y*((thetah)^(-1/sigma)+1)^(-1);

kl_fb = y - cl_fb;

kh_fb = y - ch_fb;
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beta_star = thetal*(u(cl_fb) - u(ch_fb) ) / (u(kh_fb) - u(kl_fb));

% when betta<beta_star, first best for low and high not IC

Ym =0; % dummy variable initialized

if (betta > thetal/thetam | betta < thetam/thetah )

’no money burning possible-!!!! change parameters’

else

for i = 1: length(ppmm)

% pause

clc;

pm=ppmm(i);

%construction ph and pl given pm and the ratio pl/pm

ph=(1-pm)/(1+ploverph);

pl=1-pm-ph;

% solve for mu

A = [ -thetal/thetam, 1 ; - betta , betta];

B = [ -pm ; -pm];

mu=inv(A)*B;

if mu(1) < 0 | mu(2) < 0;

display(’mu1 or mu2 is negative’); problem(i,1)=1;

else

% compute cL and cH from mu

rl = thetal*(pl + mu(1))/(pl + betta*mu(1));

% ratio of marginal utilities for the low type

rh = thetah*(ph - mu(2)*thetam/thetah)/(ph - betta*mu(2) );

% ratio of marginal utilities for the high type

% if any of these ratios is negative .. this cannot be possible.. stop

if rl<0 | rh<0; display(’rl or rh are negative’); problem(i,1)=1.5; else

% compute the allocation for low and high from the ratio

% of marginal utilities and income

c1l = y*[ 1 + rl.^(-1/sigma)].^-1; c2l = y - c1l;
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c1h = y*[ 1 + rh.^(-1/sigma)].^-1; c2h = y - c1h;

u1l = u(c1l); u2l = u(c2l); u1h = u(c1h); u2h = u(c2h);

% now compute u1m and u2m from binding linear IC equations

% for low and medium types

Aic = [ thetal , betta ; thetam , betta];

Bic = [ thetal*u1l + betta*u2l ; thetam*u1h + betta*u2h];

um = inv(Aic)*Bic;

%checking that those utility values are feasible

if (sigma-1)*um(1)>0 | (sigma-1)*um(2) >0

’ utility is out of bounds’

problem(i,1) = 2;

else

%finding the consumption bundle for the middle type

c1m =[(1-sigma)*um(1)].^(1/(1-sigma));

c2m =[(1-sigma)*um(2)].^(1/(1-sigma));

c1 = [c1l, c1m, c1h]

C1(i,:) = c1;

% check monotonicity, which is a necessary condition

% for IC and has not been imposed yet

if c1l > c1h | c1m > c1h | c1l > c1m | c2m > c2l | c2m < c2h | c2l < c2h

’proposed solution is not IC!’

problem(i,1)=3;

else

% check sign of lamdaH (multiplier of the resource for the high type)

% the multiplier for the low type is positive if mu is positive

if ph - thetam/thetah*mu(2) < 0 | ph - betta*mu(2) < 0 ;

’lamdam turned out negative’

problem(i,1) = 4;

else
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ym = c1m + c2m

Ym(i,1) = ym;

u1m = u(c1m); u2m = u(c2m);

U = pl*[thetal*u1l + u2l] + pm*[thetam*u1m + u2m]+ ph*[thetah*u1h + u2h];

Etheta = (pl*thetal+pm*thetam+ph*thetah);

cpool = (1+Etheta^(-1/sigma))^(-1);

Upool = Etheta*u(cpool)+u(1-cpool);

if Upool > U

’pooling is better :p’

problem(i,1) = 5;

else

’separating is better than pooling’

end

end

end

end

end

end

end

end

clf

figure(1)

titletext(1) = {’c1 allocation for l, m and h ’};

titletext(2) = {[’\sigma =’,num2str(sigma),...

’ \theta_l =’,num2str(thetal), ’\theta_h =’,num2str(thetam),...

’ pl/ph =’,num2str(ploverph), ’\beta =’,num2str(betta)]};

beta_star

plot(ppmm(find(problem==0)) , C1(find(problem==0),:))

grid

xlabel(’pm’)

ylabel(’c_1’)

legend(’c_1_l’,’c_1_m’,’c_1_h’)
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title( titletext , ’fontweight’ , ’bold’)

figure(2)

plot(ppmm(find(problem==0)) , Ym(find(problem==0)))

grid

xlabel(’p_m’)

ylabel(’c_m + k_m ’)

title(’Total consumption for m-type’,’fontweight’,’bold’)

function f=u(x)

global sigma

f = (1/(1-sigma))*x.^(1-sigma);
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