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Abstract

We present a tractable dynamic general equilibrium model of self-fulfilling bank runs, where

banks trade capital in competitive and liquid markets but remain vulnerable to runs due to

a loss of creditor confidence. We characterize how the vulnerability of an individual bank

depends on its leverage position and the economy wide asset prices. We study the effect of

credit easing policies, in the form of asset purchases. When a banking crisis is generated by

runs, credit easing can reduce the number of defaulting banks and enhance welfare. When

the crisis is driven by fundamentals, credit easing may have adverse consequences.
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1 Introduction

Most financial crises involve bank runs. Often, the runs occur simultaneously in multiple financial

institutions and emerge after a deterioration of banks’ balance sheets. The Great Depression

and the 2008 Global Financial Crisis are two notable examples (Friedman and Schwartz, 1963;

Bernanke, 2013).

Diamond and Dybvig (1983) spurred a vast literature analyzing whether a fundamentally

solvent bank may be subject to a self-fulfilling run. During a run, investors rush to withdraw

deposits from the bank, anticipating that others will do so as well. The run may thus cause a

severe liquidity problem and leave the bank unable to meet the withdrawals, making the run

self-fulfilling. As highlighted by Gorton (1988), bank runs are not isolated events. They tend

to happen in many banks at the same time and are more likely when aggregate fundamentals

are weak. This observation suggests that self-fulfilling bank runs may be the result of general

equilibrium forces and that runs in turn may affect general equilibrium outcomes. Understanding

this feedback and the potential implications for policy requires a dynamic general equilibrium

model.

In this paper, we present a tractable dynamic macroeconomic model of financial crises in

which banks may be subject to self-fulfilling runs. We analytically characterize how a bank’s

vulnerability depends on individual and aggregate fundamentals and how the number of banks

facing a run affects aggregate fundamentals in turn. Our normative analysis shows that the

interplay between self-fulfilling beliefs and general equilibrium feedback has distinct implications

for policy. We establish that the desirability of credit easing depends on whether a financial crisis

is driven by fundamentals or self-fulfilling bank runs. While credit easing helps reduce fragility in

a run-driven crisis—as banks facing a run benefit from the rise in asset prices—we show that it

may backfire in a fundamentals-driven crisis.

We build a dynamic model in which banks have limited commitment and trade capital in

perfectly liquid and competitive markets. The possibility of default gives rise to an endogenous

borrowing limit, which depends on future asset returns and the tightness of future borrowing

limits. In turn, asset prices are determined in general equilibrium and are themselves affected by

banks’ current and future borrowing limits.

In our model, a bank may default because of fundamental reasons about the ex-post returns on

its assets. But it may also default because of a run. We introduce runs following the formulation

of Cole and Kehoe (2000): short-term creditors to a bank may panic and refuse to roll over their

debts. In this case, the bank must repay its maturing debts by either cutting equity payouts or

selling some of its assets holdings. If the costs of these actions is sufficiently high, it becomes

optimal for the bank to default, making the run a self-fulfilling equilibrium outcome.
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A distinctive feature of our model, relative to the Diamond and Dybvig model, is that runs

occur even though the bank can sell its assets in a liquid market, a feature that resonates with

the recent March 2023 banking turmoil.
1

Crucial for the possibility of runs is the existence of

a positive spread between the return on capital and the cost of borrowing. A positive spread is

associated with a positive franchise value for the bank, which implies that the inability to leverage

because of a run reduces the value of the bank. When the reduction in the bank value is sufficiently

strong, the bank becomes exposed to a self-fulfilling run, in which investors run because they

expect others to run as well, thus preventing the bank from obtaining the intermediation profit.

On the other hand, we show that when the spread is zero, individual banks are not vulnerable to

runs. In this case, access to a spot liquid market for capital renders the presence of runs irrelevant.

In general equilibrium, transitional dynamics can be separated into three regions. When

aggregate leverage is low, the economy converges to a stationary equilibrium in which all banks

repay at all times. In this region, asset prices are high, reflecting banks’ high productivity and

collateral values. When aggregate leverage is high, all banks default, and asset prices are depressed.

For intermediate values of leverage, we have an interior share of banks defaulting. The presence

of runs increases the number of banks that default, generating an increase in financial fragility.

Finally, we turn to our normative analysis, which examines the role of credit easing policies

in the form of asset purchases. The key question we tackle is, How does credit easing affect the

number of defaulting banks and the level of welfare?

We demonstrate that the effects of credit easing are different depending on whether a crisis

is driven by fundamentals or by runs. Namely, we show that credit easing reduces fragility in

a crisis driven by runs, but may backfire in the absence of runs. The logic for this result can be

understood by tracing which banks are the net sellers of capital and which banks are the net

buyers, depending on the origin of the crisis.

Consider first a crisis driven by runs. In this situation, the marginal bank (i.e., the bank

indifferent between repaying and defaulting) is a net seller of assets—it needs to sell assets to

meet repayments of deposits. Thus, by increasing asset prices, credit easing raises the value of

repaying for banks facing a run and reduces investors’ incentives to run in the first place. The

outcome is that fragility is reduced. In contrast, in a crisis driven by fundamentals, repaying banks

tend to be net buyers in the model, as they absorb the assets sold by the defaulting banks. Thus,

the government’s purchase of assets, this has a negative impact on their profitability, potentially

pushing more banks to default in equilibrium.

1
This is also a departure from Cole and Kehoe (2000), in which the borrower has a claim to a fixed stream of

income, and there is also no spot market for such claim.
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Literature. This paper is related to the literature on the role of financial factors in macroeconomic

fluctuations. Building on the seminal contributions by Bernanke and Gertler (1989) and Kiyotaki

and Moore (1997), many studies have presented models in which balance sheet losses on firms or

financial intermediaries can trigger contractions of output and asset prices.
2

Unlike this literature,

our paper considers a source of financial fragility induced by liquidity factors and self-fulfilling

runs.

Our paper belongs to an extensive literature on bank runs. One strand of the literature, starting

with Diamond and Dybvig (1983), considers bank runs that are the outcome of a self-fulfilling

prophecy in the presence of a liquidity mismatch. A different strand of the literature studies

models of runs based on fundamentals, following Bryant (1980). In this alternative paradigm,

individual investors who have a sudden need for liquidity find it optimal to run, even if nobody else

does. Allen and Gale (2000) and Uhlig (2010) are notable examples in this class of models studying

contagion through interbank market linkages and asset prices.
3

The interplay between runs and

asset prices is also at the heart of our analysis, but we consider self-fulfilling runs, as in the first

strand of the literature. Overall, a contribution of our paper is to analyze the role of credit easing

and to show that its desirability depends on whether a crisis is driven by fundamentals or self-

fulfilling beliefs. We also differ from much of this literature by taking a dynamic macroeconomic

perspective.

Gertler and Kiyotaki (2015) develop a macroeconomic model of systemic bank runs in which a

good equilibrium with financial intermediation may coexist with a bad equilibrium in which asset

prices are low, aggregate banks’ net worth turns negative and banks are forced into liquidation.
4

In their model, when an individual bank’s net worth turns negative, it is unable to continue

operations. This implies that an individual investor would not roll over the deposits, regardless

of whether other investors are rolling over.
5

By contrast, we present a model with self-fulfilling

runs on individual banks. In our model, the condition for an individual bank to default is dynamic

and depends critically on whether investors are willing to roll over the deposits. This feature

2
A few examples include Gertler and Kiyotaki (2010), Mendoza (2010), Jermann and Quadrini (2012), He and

Krishnamurthy (2013), Brunnermeier and Sannikov (2014), and Bianchi and Mendoza (2018).

3
See also Angeloni and Faia (2013) for a dynamic model with two-period lived banks and Allen and Gale (2009)

for a review of much of this literature.

4
An active literature builds on their framework to study quantitative policy counterfactuals (see, e.g., Gertler,

Kiyotaki and Prestipino (2016, 2020a, 2020b) and Robatto, 2019). A related literature studies financial fragility

and multiplicity in different contexts (e.g., Gu, Mattesini, Monnet and Wright, 2013; Benhabib and Wang, 2013;

Brunnermeier and Sannikov, 2015; Boissay, Collard and Smets, 2016; Bocola and Lorenzoni, 2020; Ben-Ami and

Geanakoplos, 2020; Schmitt-Grohé and Uribe, 2021; and Boissay, Collard, Galı́ and Manea, 2022).

5
To the extent that the value of the bank is finite, the bank has incentives to divert assets when its net worth

is negative. There is no solution to the bank problem that satisfies the incentive compatibility constraint, even if

investors were willing to roll over the deposits.
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leads to distinctive implications for the effectiveness of policies such as lender of last resort.
6

In

addition to many other differences in the modeling setups, we conduct a normative analysis of

the desirability of credit easing.

Keister and Narasiman (2016) also tackle the question of how policy prescriptions differ

depending on the origin of the crisis. They focus on ex-ante prudential policies in an environment

featuring moral hazard due to bailouts, and they conclude that prudential policies are optimal

regardless of whether crises are caused by self-fulfilling beliefs. Farhi and Tirole (2012) show how

ex-post non-targeted interventions can lead to an excessive leverage equilibrium. In our paper,

credit easing can be welfare reducing in the absence of runs, even from an ex-post point of view.

The bankrun literature has considered several ex-post policy interventions, including deposit

insurance, deposit freezes, bailouts and lender of last resort (e.g., Diamond and Dybvig, 1983;

Cooper and Ross, 1998; Ennis and Keister, 2009; Dávila and Goldstein, 2020). These studies show

how these policies can be desirable to avoid a run in a single bank. While we also emphasize how

policies can have different implications depending on the source of the crisis, the mechanism in

our model operates entirely through a general equilibrium channel involving asset prices. By

affecting hidden trades, general equilibrium effects also play a crucial role in the analysis of

banking liquidity regulation by Farhi, Golosov and Tsyvinski (2009).
7

Our paper also speaks to historical studies on the origins of banking crises, especially the

debate on whether banking crises occur because of fundamentals or self-fulfilling prophecies (see,

among others, Friedman and Schwartz, 1963; Gorton, 1988; Calomiris and Mason, 2003; Baron,

Verner and Xiong, 2021). Our theory predicts credit easing has opposite effects on bank failures

depending on the origin of the crisis, thereby providing a testable implication that can be used to

distinguish empirically whether crises are driven by fundamentals or self-fulfilling runs.

Our paper is also related to a literature on credit easing that has flourished since the 2008

financial crisis (see, e.g., Gertler and Karadi, 2011; Curdia and Woodford, 2011, Kiyotaki and

Moore, 2019). A common theme in this literature is how a central bank that is not balance sheet

constrained can reduce excess returns by purchasing private assets when there are asset fire

sales. In our model, there are adverse effects from this intervention if the portfolio return for the

government does not exceed the one for investors. However, credit easing can become desirable

when a crisis is driven by runs.

Our environment without runs is related to the literature on investment under limited commit-

ment and, in particular, the papers of Thomas and Worrall (1994) and Alburquerque and Hopenhayn

(2004). Using an optimal contract approach, those papers solve the investment problem of an

6
For example, a policy of liquidity provision or freezing deposits is effective in our setup to prevent a run, but it

does not rule out defaults in Gertler and Kiyotaki (2015). In their model, because these policies do not alter banks’ net

worth, banks remain prone to diverting funds for personal use and default.

7
See also Di Tella (2019).
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individual firm (or government) that lacks commitment to repay its debts.
8

Our general equilib-

rium characterization of an economy with limited commitment frictions has direct antecedents

in the work of Kehoe and Levine (1993) and the solvency constraints introduced by Alvarez and

Jermann (2000) in particular.
9

For the environment with runs, we build on the formulation of

rollover crises by Cole and Kehoe (2000), which has been used to study the individual problem of

a government.
10

We adopt the canonical game, extend it with investment, embed it into a general

equilibrium model, and draw implications for macroeconomic policy.

Outline. Section 2 presents the environment and characterizes the individual bank problem in

partial equilibrium. Section 3 analyzes the general equilibrium. Section 4 conducts the normative

analysis. Section 5 discusses extensions of the baseline model and Section 6 concludes. All proofs

are in the Appendix.

2 Model

Time is discrete and infinite, 𝑡 ∈ {0, 1, 2, ...}. There is a single final consumption good, and there

are no aggregate shocks. The economy is populated by a continuum of financial institutions,

which we refer to as banks, and creditors, both of measure one. In what follows, we use lowercase

letters to denote individual variables and capital letters to denote aggregate variables.

Technology. Production of the final consumption good uses capital, 𝑘 , as a single input. We

assume that banks have direct access to the production technology, in line with the most recent

strands of macro-finance models. A bank uses capital to produce units of the consumption good.

Capital does not depreciate, and it is in fixed aggregate supply, equal to𝐾.

Preferences. Banks’ preferences over a stream of dividend payments, 𝑐𝑡 are given by

∞∑︁
𝑡=0

𝛽𝑡E[𝑢 (𝑐𝑡 )],

where 𝛽 ∈ (0, 1) and 𝑢 = log. Banks’ creditors are risk neutral and discount payoffs at a rate 𝑅.

8
This optimal contract approach is followed by several other papers in this area that also focus on investment

under limited commitment (e.g., Aguiar, Amador and Gopinath, 2009 and Kehoe and Perri, 2002).

9
See Jeske (2006) for another paper that studies limited commitment and external borrowing in decentralized

environments.

10
See, for example, Aguiar, Chatterjee, Cole and Stangebye (2016), Roch and Uhlig (2018), Bocola and Dovis (2019),

and Bianchi and Mondragon (2022) for models in sovereign debt using that formulation.
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2.1 Banks’ problem and borrowing limits

We describe now the problem of an individual bank in partial equilibrium. That is, for a given

sequence of capital prices {𝑝𝑡 }, banks choose bond issuances, investment, dividend payments, and

whether to repay the existing creditors.
11

Banks issue one-period bonds to creditors that promise a payment of 𝑅 next period. A bank

starts a period 𝑡 with 𝑘𝑡 units of capital and 𝑏𝑡 units of maturing bonds, and decides whether to

repay or to default.

If the bank chooses to repay, it produces using a linear technology and chooses its new holding

of capital for the next period 𝑘𝑡+1 ≥ 0, the new amount of bonds to issue, 𝑏𝑡+1, and how many

dividends to pay, 𝑐𝑡 . The bank faces a price schedule 𝑞𝑡 (𝑏𝑡+1, 𝑘𝑡+1) for its bonds, which depends

on its individual choices for new bonds and capital, as well as other aggregate variables that we

summarize in 𝑡 . These variables determine the incentives to default in the next period and hence

alter the price at which creditors are willing to lend today.

If the bank chooses to default, it is permanently excluded from bond markets and can only

invest in capital.
12

It also suffers a permanent productivity loss.

We will allow for the possibility of bank runs, but will do so only at period 𝑡 = 0. But first,

we describe the value of default to a bank. Determining this value allows us to solve for the

equilibrium borrowing limits that banks face.

2.2 The value of default

The bank’s productivity after defaulting is permanently equal to 𝑧𝐷 . The budget constraint for a

bank that has defaulted and has capital holdings equal to 𝑘𝑡 is

𝑐𝑡 = (𝑧𝐷 + 𝑝𝑡 )𝑘𝑡 − 𝑝𝑡𝑘𝑡+1. (1)

We define the return to capital when the bank defaults as

𝑅𝐷𝑡+1
≡ 𝑧𝐷 + 𝑝𝑡+1

𝑝𝑡
,

for all 𝑡 ≥ 0. Note that this value is common across all defaulting banks.

We can solve for the value of default, exploiting the log-utility and the linearity of production.

To guarantee the boundedness of the value function, we introduce the following condition.

11
In the rest of the paper, we will use the notation {𝑥𝑡 } to refer to the sequence {𝑥𝑡 }∞𝑡=0

for some variable 𝑥 .

12
The restriction that the bank cannot hold bonds after default is without loss of generality if the rate of return to

capital in equilibrium for a bank that has defaulted is higher than 𝑅.
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Condition 1. The sequence of (strictly positive) prices {𝑝𝑡 }∞𝑡=0
is such that

lim

𝑡→∞
𝛽𝑡 log

(
𝑅𝐷𝑡+1

)
= 0.

Let us define the net worth of a defaulting bank to be

𝑛𝐷𝑡 = (𝑧𝐷 + 𝑝𝑡 )𝑘𝑡 .

We have the following result:

Lemma 1 (The value of default). Suppose that Condition 1 holds. Then the value of default,𝑉 𝐷
𝑡 (𝑛𝐷𝑡 ),

in period 𝑡 is finite and such that

𝑉 𝐷
𝑡 (𝑛𝐷𝑡 ) = 𝐴 + 1

1 − 𝛽 log(𝑛𝐷𝑡 ) +
𝛽

1 − 𝛽
∑︁
𝜏≥𝑡

𝛽𝜏−𝑡 log

(
𝑅𝐷𝜏+1

)
, (2)

with
𝐴 ≡ 1

1 − 𝛽

[
log(1 − 𝛽) + 𝛽

1 − 𝛽 log(𝛽)
]
.

Proof. In Appendix A.1. □

The value function is log-linear in wealth and the discounted future returns on capital. The

associated policy function for capital, K𝐷
𝑡+1

(𝑛𝐷𝑡 ), and dividend payout, C𝐷𝑡+1
(𝑛𝐷𝑡 ), are given by

K𝐷
𝑡+1

(𝑛𝐷𝑡 ) = 𝛽
𝑛𝐷𝑡

𝑝𝑡
,

C𝐷𝑡 (𝑛𝐷𝑡 ) = (1 − 𝛽)𝑛𝐷𝑡 .

Because of log preferences, the optimal policy is independent of future returns. Under this

investment policy, the evolution of net worth is given by

𝑛𝐷𝑡+1
= 𝛽𝑅𝐷𝑡+1

𝑛𝐷𝑡 .

2.3 The value of repayment

In case of repayment in period 𝑡 , a bank with capital 𝑘𝑡 and debt 𝑏𝑡 can issue new debt, 𝑏𝑡+1, and

purchase new capital, 𝑘𝑡+1, according to its budget constraint:

𝑐𝑡 = (𝑧𝑡 + 𝑝𝑡 )𝑘𝑡 − 𝑅𝑏𝑡 + 𝑞𝑡 (𝑏𝑡+1, 𝑘𝑡+1)𝑏𝑡+1 − 𝑝𝑡𝑘𝑡+1. (3)

7



For all 𝑡 ≥ 1, we assume that the productivity under repayment is constant, 𝑧𝑡 = 𝑧. At 𝑡 = 0,

we assume that 𝑧0 is drawn from a cumulative distribution function 𝐹 with support [𝑧, 𝑧]. Such a

draw is i.i.d. across banks.
13

Let us define the net worth of a repaying bank at time 𝑡 :

𝑛𝑡 = (𝑧𝑡 + 𝑝𝑡 )𝑘𝑡 − 𝑅𝑏𝑡 .

The value of the repaying bank at 𝑡 as a function of its net worth 𝑛 is

𝑉 𝑅𝑡 (𝑛𝑡 ) = max

𝑘𝑡+1≥0,𝑏𝑡+1,𝑐𝑡

log(𝑐𝑡 ) + 𝛽𝑉𝑡+1(𝑏𝑡+1, 𝑘𝑡+1) (4)

subject to

𝑐𝑡 = 𝑛 + 𝑞𝑡 (𝑏𝑡+1, 𝑘𝑡+1)𝑏𝑡+1 − 𝑝𝑡𝑘𝑡+1,

where 𝑉𝑡+1 is the continuation value function, which incorporates the possibility of default.

Given that for 𝑡 ≥ 1, we have assumed that there are no runs, this continuation value is just

given by the optimal choice between repayment and default next period. That is, for 𝑡 ≥ 1,

𝑉𝑡 (𝑏𝑡 , 𝑘𝑡 ) = max{𝑉 𝑅𝑡 ((𝑧 + 𝑝𝑡 )𝑘𝑡 − 𝑅𝑏𝑡 ),𝑉 𝐷
𝑡 ((𝑧𝐷 + 𝑝𝑡 )𝑘𝑡 )}. (5)

Using 𝑑𝑡 = 0 to represent a repayment decision at 𝑡 and 𝑑𝑡 = 1 a default, we have that the

optimal default rule for 𝑡 ≥ 1 is

𝑑𝑡 (𝑏𝑡 , 𝑘𝑡 ) =


1 if 𝑉 𝑅𝑡 ((𝑧 + 𝑝𝑡 )𝑘𝑡 − 𝑅𝑏𝑡 ) < 𝑉 𝐷
𝑡 ((𝑧𝐷 + 𝑝𝑡 )𝑘𝑡 ),

0 if 𝑉 𝑅𝑡 ((𝑧 + 𝑝𝑡 )𝑘𝑡 − 𝑅𝑏𝑡 ) ≥ 𝑉 𝐷
𝑡 ((𝑧𝐷 + 𝑝𝑡 )𝑘𝑡 ),

(6)

where we assume, without loss of generality, that the bank repays if indifferent.
14

The lenders price the bonds taking into account this default rule, and thus 𝑞𝑡 (𝑏𝑡+1, 𝑘𝑡+1) =

𝑑𝑡+1(𝑏𝑡+1, 𝑘𝑡+1). That is, creditors purchase bonds at a zero price when they expect a certain default

and purchase bonds at a price of 1 when they expect certain repayment.

The value of repayment at time 𝑡 is strictly decreasing in 𝑏𝑡 for a given 𝑘𝑡 , which implies that

the optimal default rule can be expressed with a debt threshold that is determined by the equality

of default and repayment values,𝑉 𝐷
𝑡+1

((𝑧𝐷 +𝑝𝑡+1)𝑘𝑡+1) = 𝑉 𝑅𝑡+1
((𝑧 +𝑝𝑡+1)𝑘𝑡+1 −𝑅𝑏𝑡+1). The pricing of

the bonds inherits this threshold property, switching from 1 to 0 when debt exceeds the threshold.

13
This initial productivity shock could capture different portfolio exposures to an aggregate shock.

14
The reason why assuming that the bank pays if indifferent for 𝑡 > 0 is without loss of generality is as follows. If

banks were to randomize when indifferent for 𝑡 > 0 (with some arbitrary probability), it would be strictly optimal for

the bank to choose a level of debt 𝜖 below the indifferent point and borrow at a price of 1.
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We now guess that the value function under repayment (if finite) will be log-linear in net

worth. Specifically, we guess that 𝑉 𝑅𝑡+1
(𝑛𝑡+1) = 1

1−𝛽 log(𝑛𝑡+1) + constant. This then implies that

there exists a 𝛾𝑡 such that for 𝑞𝑡 (𝑏𝑡+1, 𝑘𝑡+1) = 1, 𝑏𝑡+1 ≤ 𝛾𝑡𝑝𝑡+1𝑘𝑡+1 and zero otherwise.
15

A bank

will not find it optimal to borrow above this threshold, as the revenue it receives from its bond

issuances is zero. Thus, the bank is effectively subject to a borrowing constraint:

𝑏𝑡+1 ≤ 𝛾𝑡𝑝𝑡+1𝑘𝑡+1,

where 𝛾𝑡 is an equilibrium object.
16

We define the return to capital when the bank repays as

𝑅𝑘𝑡+1
≡ 𝑧 + 𝑝𝑡+1

𝑝𝑡
,

for all 𝑡 ≥ 0. We assume that there is a productivity loss after default, 𝑧𝐷 < 𝑧, which implies that

𝑅𝑘𝑡+1
> 𝑅𝐷𝑡+1

.

Let us define the levered return on equity, 𝑅𝑒𝑡 , as

𝑅𝑒𝑡+1
≡ 𝑅𝑘𝑡+1

+ (𝑅𝑘𝑡+1
− 𝑅) 𝛾𝑡𝑝𝑡+1

𝑝𝑡 − 𝛾𝑡𝑝𝑡+1

, (7)

which corresponds to the sum of the return on capital plus the excess return (of capital over

bonds) times a leverage factor.
17

We need to impose as well a condition on {𝑅𝑒𝑡 } to guarantee the

value of repayment for an individual bank is bounded, similar to Condition 1 for the case of a

defaulting bank. Anticipating the general equilibrium, we restrict attention to sequences of prices

and borrowing limits that satisfy the following.

Condition 2. The sequences of prices {𝑝𝑡 } and {𝛾𝑡 } are such that

(i) 𝑅𝑘𝑡+1
≥ 𝑅 for all 𝑡 ≥ 0,

(ii) 𝛾𝑡𝑝𝑡+1 < 𝑝𝑡 for every 𝑡 ≥ 0 such that 𝑅𝑘𝑡+1
> 𝑅,

(iii) lim

𝑡→∞
𝛽𝑡 log

(
𝑅𝑒𝑡+1

)
= 0.

15
These constraints are the equivalent of the “not too tight” solvency constraints introduced by Alvarez and Jermann

(2000). In comparison with their environment, ours features the presence of capital, production, and default costs, as

well as an exogenous risk-free rate 𝑅. In our environment without risk, the borrowing constraints also coincide with

the endogenous borrowing constraints used by Zhang (1997).

16
This also implies that equilibrium default occurs only in the initial period.

17
The intuition for the expression for the leverage factor is as follows. Starting with one unit of net worth, the bank

can use it to purchase 1/𝑝𝑡 units of capital, enabling it to borrow 𝛾𝑡𝑝𝑡+1/𝑝𝑡 bonds. In turn, the additional borrowing

allows the bank to purchase more capital and obtain further borrowing. If 𝛾𝑡𝑝𝑡+1 < 𝑝𝑡 , the bank’s borrowing capacity

per unit of net worth becomes 𝛾𝑡𝑝𝑡+1/(𝑝𝑡 − 𝛾𝑡𝑝𝑡+1). The return per unit of borrowing is 𝑅𝑘𝑡 − 𝑅, thus leading to (7).
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Part (i) makes sure that capital demand is not zero. Part (ii) makes sure that capital demand is

not infinite. Note that part (iii) of this condition implies Condition 1 is 𝑅𝑒𝑡+1
≥ 𝑅𝑘𝑡+1

> 𝑅𝐷𝑡+1
> 0.

We can now solve for the value function of repayment (confirming that it is log-linear in net

worth) as well as characterize the associated policy functions.

Lemma 2 (The value of repayment). Consider a sequence of (strictly positive) prices, {𝑝𝑡 }, and
(non-negative) borrowing limits, {𝛾𝑡 }, that satisfy Condition 2. Then, the repayment value, 𝑉 𝑅𝑡 (𝑛𝑡 ),
for a bank with net worth 𝑛𝑡 at time 𝑡 , along with its corresponding policy functions, is as follows:

(i) Value function:

𝑉 𝑅𝑡 (𝑛𝑡 ) = 𝐴 + 1

1 − 𝛽 log(𝑛𝑡 ) +
𝛽

1 − 𝛽
∑︁
𝜏≥𝑡

𝛽𝜏−𝑡 log(𝑅𝑒𝜏+1
), (8)

with constant 𝐴 as in Lemma 1.

(ii) Policy functions:
C𝑅𝑡 (𝑛𝑡 ) = (1 − 𝛽)𝑛𝑡 ,

for all 𝑡 ≥ 0 and where K𝑅
𝑡+1

(𝑛𝑡 ) and B𝑅
𝑡+1

(𝑛𝑡 ), satisfy

𝑝𝑡K𝑅
𝑡+1

(𝑛𝑡 ) − B𝑅
𝑡+1

(𝑛𝑡 ) =𝛽𝑛𝑡 , B𝑅
𝑡+1

(𝑛𝑡 ) ≤ 𝛾𝑡𝑝𝑡+1K𝑅
𝑡+1

(𝑛𝑡 ), K𝑅
𝑡+1

(𝑛𝑡 ) ≥ 0

for all 𝑡 ≥ 0. And

K𝑅
𝑡+1

(𝑛𝑡 ) =
𝛽𝑛𝑡

𝑝𝑡 − 𝛾𝑡𝑝𝑡+1

, B𝑅
𝑡+1

(𝑛𝑡 ) = 𝛾𝑡𝑝𝑡+1

(
𝛽𝑛𝑡

𝑝𝑡 − 𝛾𝑡𝑝𝑡+1

)
for all 𝑡 ≥ 0 such that 𝑅𝑘𝑡+1

> 𝑅.

Proof. In Appendix A.2. □

Under repayment, the problem also features a value function that is log-linear in net worth

and future returns, thus confirming our previous guess that the borrowing constraint is linear.

The value of the bank (ignoring the constant 𝐴) can be split between the market value of its

assets minus its liabilities, and the bank’s return on equity. The return on equity term can be

further decomposed as follows:

𝛽

1 − 𝛽
∑︁
𝜏≥𝑡

𝛽𝜏−𝑡 log(𝑅) + 𝛽

1 − 𝛽
∑︁
𝜏≥𝑡

𝛽𝜏−𝑡 log(𝑅𝑘𝜏+1
/𝑅) + 𝛽

1 − 𝛽
∑︁
𝜏≥𝑡

𝛽𝜏−𝑡 log(𝑅𝑒𝜏+1
/𝑅𝑘𝜏+1

),

where the first term captures the market return on savings (available to all agents), and where the

last two terms capture the “franchise value” of the bank. The first of these two is the excess return
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earned by a bank from its production technology, 𝑅𝑘𝑡+1
≥ 𝑅. And the second term is the excess

return that arises from the bank’s ability to leverage, 𝑅𝑒𝑡+1
≥ 𝑅𝑘 . When 𝑅𝑘𝑡+1

= 𝑅 for all 𝑡 ≥ 0, these

last two terms are zero; that is, there is no franchise value.
18

As we will see below, these terms

play an important role for the existence of bank runs.

Regarding the portfolio choice, the solution distinguishes between the case in which 𝑅𝑘𝑡+1
= 𝑅

and 𝑅𝑘𝑡+1
> 𝑅. If the return on capital is equal to the return on debt at date 𝑡 , the bank is indifferent

between bonds and capital and chooses any portfolio as long as it is consistent with the dividend

policy and the leverage constraint. If the return on capital exceeds the one on debt, the bank

borrows to the limit.

Using the results of Lemma 2, we can express the evolution of net worth under repayment as

𝑛𝑡+1 = 𝛽𝑅
𝑒
𝑡+1
𝑛𝑡

for all 𝑡 ≥ 0. Hence, next-period net worth is given by the amount of net worth that is not

consumed, 𝛽𝑛, times the return on equity.

Default thresholds at 𝑡 ≥ 1. Having characterized the values of repayment and default, we

can now examine the default thresholds for 𝑡 ≥ 1. Using Lemmas 1 and 2, a bank that borrows to

the maximum of its borrowing constraint is indifferent between repayment and default for 𝑡 ≥ 1

if the following holds:

((𝑧 + 𝑝𝑡 )𝑘𝑡 − 𝑅𝛾𝑡−1𝑝𝑡𝑘𝑡 )
∞∏

𝜏=𝑡+1

(𝑅𝑒𝜏 )𝛽
𝜏−𝑡

= (𝑧𝐷 + 𝑝𝑡 )𝑘𝑡
∞∏

𝜏=𝑡+1

(𝑅𝐷𝜏 )
𝛽𝜏−𝑡

.

The left-hand side is the (exponential of the) value of repaying in period 𝑡 after borrowing 𝑏𝑡 =

𝛾𝑡−1𝑘𝑡 in the previous period. The right-hand side is the (exponential of the) value of default in

period 𝑡 . Note that the value of 𝑘𝑡 cancels, and the value of 𝛾𝑡−1 is determined by the remaining

indifference. The following proposition rewrites the values of {𝛾𝑡 } recursively.

Proposition 1 (Default decision). Consider a sequence of (strictly positive) prices, {𝑝𝑡 }, and a
sequence of (non-negative) borrowing limits, {𝛾𝑡 }, that satisfy Condition 2. The sequence of {𝛾𝑡 }
consistent with indifference between repayment and default for all 𝑡 ≥ 1 is such that

𝑧 + 𝑝𝑡+1(1 − 𝛾𝑡𝑅)
𝑧𝐷 + 𝑝𝑡+1

=

(
1 − 𝛾𝑡+1

𝑝𝑡+2

𝑝𝑡+1

)𝛽
for all 𝑡 ≥ 0. (9)

18
In general equilibrium, this franchise can remain strictly positive because the limited commitment constraint

prevents banks from competing away the arbitrage gap between 𝑅𝑘 and 𝑅. An alternative source for a positive

franchise value is imperfect competition (see Corbae and D’Erasmo, 2021, for an example of this in the context of a

macroeconomic model).
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Proof. In Appendix A.3. □

The sequence for default thresholds {𝛾𝑡 } depends on preference and productivity parameters,

as well as the sequence for {𝑝𝑡 }. One can see, in particular, that a higher 𝛾𝑡+1 in the future implies

a higher 𝛾𝑡 today. Because a higher 𝛾𝑡+1 increases the continuation value of repayment, this also

makes the bank more willing to repay today.

The above suggests that there could be potentially many sequences of borrowing limits, {𝛾𝑡 },
that would be consistent with a partial equilibrium given a sequence of capital prices. However,

for an equilibrium to be consistent with creditors’ optimality, we also require a no-Ponzi game

condition. That is,

lim

𝑡→∞
𝑅−𝑡𝑏𝑡 ≤ 0,

where {𝑏𝑡 } is a feasible sequence of debt issuances. As we show in Amador and Bianchi (2021),

we can establish a uniqueness result for the sequence of {𝛾𝑡 } that is consistent with (9) once we

impose this condition. Using the fact that 𝑏𝑡+1 ≤ 𝛾𝑡𝑝𝑡+1

𝛽𝑛𝑡
𝑝𝑡−𝛾𝑡𝑝𝑡+1

, together with the evolution of net

worth, we therefore impose the following condition as an additional restriction to the sequence of

{𝛾𝑡 }:

Condition 3. The sequence of prices {𝑝𝑡 } and {𝛾𝑡 } is such that

lim

𝑡→∞

[
𝑡∏
𝜏=0

(
𝛽𝑅𝑒𝑡

𝑅

)] (
𝛽𝛾𝑡𝑝𝑡+1

𝑝𝑡 − 𝛾𝑡𝑝𝑡+1

)
≤ 0.

With this, we can characterize the sequence of 𝛾𝑡 that is consistent with banks’ and creditors’

optimality conditions, given a sequence of prices:

Definition 1. Given a sequence of (strictly positive) prices {𝑝𝑡 }∞𝑡=0
, we say a sequence of (non-

negative) borrowing limits {𝛾𝑡 }∞𝑡=0
is equilibrium consistent if Conditions 2 and 3 hold and equation

(9) is satisfied for all 𝑡 ≥ 0.

2.4 Initial period: Fundamental defaults and runs

In the above, we have described the default behavior for 𝑡 ≥ 1, in the absence of any future runs.

We now proceed to study the default decision at 𝑡 = 0 and introduce the possibility of self-fulfilling

runs.

Recall that in period 𝑡 = 0, a repaying bank has a productivity drawn from a c.d.f. 𝐹 . Depending

on the realization of this draw, a bank may choose to repay or default in period 𝑡 = 0. We will

consider two different situations. In the first situation, a bank is able to continue borrowing as

long as it decides to repay. When a bank defaults in this case, we refer it to as a “fundamental”

12



default. In the second situation, investors refuse to roll over the deposits. When a bank defaults in

this case, we refer it to as a “run-driven” default. We describe next how the two default thresholds

are determined in each case.

Fundamental default threshold. Consider a bank in period 𝑡 = 0 that can roll over the debt.

The default decision of such a bank is the same as in later periods: it compares the value of

repaying, 𝑉 𝑅
0
((𝑧0 + 𝑝0)𝑘0 − 𝑅𝑏0), with the value of defaulting, 𝑉 𝐷

0
((𝑧𝐷 + 𝑝0)𝑘0). Given that 𝑉 𝑅

0
is

increasing in 𝑧0 (for 𝑘0 > 0), there exists a threshold 𝑧𝐹 such that banks with a realization of 𝑧0

below 𝑧𝐹 default, while those with a realization above repay (in the absence of a run).

Using again Lemmas 1 and 2, we can obtain that the default threshold 𝑧𝐹 is given by

𝑧𝐹 = (𝑧𝐷 + 𝑝0)
∞∏
𝑡=1

(
𝑅𝐷𝑡

𝑅𝑒𝑡

)𝛽𝑡
− 𝑝0

(
1 − 𝑅 𝑏0

𝑝0𝑘0

)
. (10)

Given the threshold, the probability that a bank defaults (in the absence of runs) at 𝑡 = 0 is

𝐹 (𝑧 𝑓 ). One can immediately see the role of “leverage”: a higher 𝑏0/(𝑝0𝑘0) increases this threshold

and thus increases the probability of a fundamental default.

Run threshold. The analysis of the previous section tells us that any bank with a productivity

draw 𝑧0 < 𝑧𝐹 will default at 𝑡 = 0. We now incorporate the possibility of runs. Following the work

of Cole and Kehoe (2000), a run will be the outcome of a coordination failure by the creditors of the

bank.
19

In this case, a bank with 𝑧0 > 𝑧𝐹 may be forced to default, even though it is fundamentally

sound.

Recall that 𝑛0 = (𝑧0 + 𝑝0)𝑘0 − 𝑅𝑏0 and 𝑛𝐷
0
= (𝑧𝐷 + 𝑝0)𝑘0 denote the bank’s net worth under

repayment and default. Let 𝑉 𝑅𝑢𝑛
0

(𝑛0) denote the repaying value for a bank with net worth 𝑛0 if it

is unable to issue new debt (that is, it suffers a run), but still decides to repay its existing creditors.

This value is obtained as the solution to the following problem:

𝑉 𝑅𝑢𝑛
0

(𝑛0) = max

𝑘1≥0,𝑐0>0

log(𝑐0) + 𝛽𝑉 𝑅1 ((𝑧 + 𝑝1)𝑘1) ,

subject to

𝑐0 = 𝑛0 − 𝑝0𝑘1.

19
The sovereign debt literature distinguishes between fundamental defaults and self-fulfilling defaults (runs),

according to the timing of the play. In fundamental defaults, the sovereign first chooses to repay and then decides

how much debt to issue. This is referred to as the Eaton-Gersovitz timing (Eaton and Gersovitz, 1981). In the run

scenario, the sovereign issues the debt first and then chooses to repay. This second timing, the Cole-Kehoe timing,

introduces the possibility that a default may be triggered because of a coordination failure in the financial markets

that refuse to absorb newly issued debt. See Aguiar and Amador (2021).
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The constraint set in the above problem is non-empty as long as 𝑛0 > 0. Note that at 𝑡 = 1, this

bank starts without any debt, and as a result, the continuation value is given by the repaying value

function 𝑉 𝑅
1
((𝑧 + 𝑝1)𝑘1) (as a bank with no liabilities does not default).

A bank suffering a run defaults if 𝑉 𝑅𝑢𝑛
0

(𝑛0) < 𝑉 𝐷
0
(𝑛𝐷

0
). Given that the repayment value

𝑉 𝑅𝑢𝑛
0

(𝑛0) is strictly increasing in 𝑛0, defaults under a run occur following a threshold rule as before.

Let 𝑧𝑅𝑢𝑛 denote the threshold value such that when facing a run, a bank with this productivity is

indifferent between defaulting or not. Using Lemmas 1 and 2, we have that

((𝑧𝑅𝑢𝑛 + 𝑝0)𝑘0 − 𝑅𝑏0)
[
(𝑅𝑘

1
)𝛽

∞∏
𝑡=2

(𝑅𝑒𝑡 )𝛽
𝑡

]
= (𝑧𝐷 + 𝑝0)𝑘0

∞∏
𝑡=1

(𝑅𝐷𝑡 )𝛽
𝑡

.

The right-hand side represents the value of default, and it is the same as in the case without runs.

The left-hand side is different: it incorporates that during a run, the return for a repaying bank is

reduced from 𝑅𝑒
1

to 𝑅𝑘
1
, as the bank is unable to leverage during the run.

Solving out for the threshold, we have that

𝑧𝑅𝑢𝑛 = (𝑧𝐷 + 𝑝0)
(
𝑅𝐷

1

𝑅𝑘
1

)𝛽
×

∞∏
𝑡=2

(
𝑅𝐷𝑡

𝑅𝑒𝑡

)𝛽𝑡
− 𝑝0

(
1 − 𝑅 𝑏0

𝑝0𝑘0

)
. (11)

We say that a bank is “safe” in period 𝑡 = 0 if even under a run, it chooses to repay its debts

rather than default. That is, a bank is safe if 𝑉 𝑅𝑢𝑛
0

(𝑛0) ≥ 𝑉 𝐷
0
(𝑛𝐷

0
). We use the term ”safe” because

if a bank does not find it optimal to default upon a run, then investors do not have incentives to

run. On the other hand, such a bank is “vulnerable” if it finds optimal to default under a run; that

is, if 𝑉 𝑅𝑢𝑛
0

(𝑛0) < 𝑉 𝐷
0
(𝑛𝐷

0
).

Inspection of the value functions shows that𝑉 𝑅
0
(𝑛0) ≥ 𝑉 𝑅𝑢𝑛0

(𝑛0), as a bank that does not suffer

a run but repays is weakly better off than one that suffers one and repays. If 𝑉 𝑅𝑢𝑛
0

(𝑛0) = 𝑉 𝑅0 (𝑛0)
for all 𝑛 ≥ 0, then 𝑧𝑅𝑢𝑛 = 𝑧𝐹 ; the fundamental default and run thresholds coincide. Comparing

the thresholds (10) and (11), we see that the thresholds are different if and only if 𝑅𝑘
1
< 𝑅𝑒

1
. In

other words, runs precipitate a default only when there is a profit loss from the bank’s inability to

leverage in a run. Using (7), we can re-express this in terms of prices {𝑝𝑡 } and borrowing limits

{𝛾𝑡 }:

Lemma 3 (Comparison of thresholds). Consider a sequence of prices {𝑝𝑡 } and borrowing limits
{𝛾𝑡 } that satisfy Condition 2. We have that 𝑧𝐹 < 𝑧𝑅𝑢𝑛 if and only if 𝛾0 > 0, and 𝑅𝑘

1
> 𝑅. Otherwise,

𝑧𝐹 = 𝑧𝑅𝑢𝑛 .

This lemma tells us that defaults due to runs can occur in our model only if two conditions are

met: 𝛾0 > 0, and 𝑅𝑘
1
> 𝑅. If 𝛾0 = 0, then a repaying bank cannot borrow, and thus whether or not
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it suffers a run does not alter its default decision. If 𝑅𝑘
1
= 𝑅, a bank that suffers a run could also

optimally have chosen to reduce its debts to zero and scale down its capital. This is so because

when 𝑅𝑘
1
= 𝑅𝑒

1
= 𝑅, and such a bank is indifferent between capital and bonds.20

To understand the nature of runs in our model, it is helpful to contrast with the Diamond and

Dybvig model. In that setup, banks hold illiquid assets, which cannot be sold in the event of a run

(or can be sold but face a liquidation cost). When a run occurs, a bank may be forced to default

even though the bank would be solvent if depositors were to wait until the assets mature. In our

model, the assets that the bank holds (capital) are perfectly liquid and can be sold at no cost at the

market price 𝑝𝑡 , which for an individual bank is a given. In equilibrium, if there is a gap between

𝑅𝑘
1

and 𝑅 and 𝛾0 > 0, then banks leverage and make profits. In this situation, a bank that does not

suffer a run receives an excess return 𝑅𝑒
1
> 𝑅 on its equity next period. When the bank suffers a

run, it can indeed liquidate its assets at no cost, but it loses this excess return. It is this “illiquid”

component of the bank technology that makes a bank vulnerable to a run.
21

2.5 The marginal bank and demand for capital: Fundamentals vs. runs

Banks that default because of fundamentals or face a run have different demands for capital. As

we will see below, this difference will have crucial implications for the effects of policies.

Let us begin by examining the bank with a productivity exactly at the fundamental default

threshold, 𝑧𝐹 . Assuming that 𝑅𝑘
1
> 𝑅, the demand for capital of this marginal bank in period 𝑡 = 0,

if it repays its debts, is

𝑘𝑅
1
≡ 𝛽

(𝑧 𝑓 + 𝑝0)𝑘0 − 𝑅𝑏0

𝑝0 − 𝛾0𝑝1

. (12)

If this marginal bank were to default, its demand for capital would be

𝑘𝐷
1
= 𝛽

(𝑧𝐷 + 𝑝0)𝑘0

𝑝0

. (13)

20
This result from our model is quite different from that of Cole and Kehoe (2000) in the sovereign debt literature, in

which the possibility of a run always affects the default threshold. In that model, the government has an endowment

stream that cannot be sold. By contrast, in our model the bank has access to a spot liquid market for capital. When

𝑅𝑘
1
= 𝑅, the ability to sell assets in the market renders the presence of runs irrelevant.

21
This feature resonates with the March 2023 turmoil in commercial banks. As long-term rates increase, banks face

losses in their long-term Treasuries. At the same time, deposit rates did not increase one-to-one with interest rates,

and so excess returns went up. The run on SVB and other banks, however, implied that banks could not leverage to

exploit the excess return, thus effectively lowering the franchise value and making them vulnerable to the runs. See

Jiang, Matvos, Piskorski and Seru (2023) and Drechsler, Savov and Schnabl (2023) for a discussion of these issues.
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Using the threshold value in (10) together with Proposition 1, we can rewrite 𝑘𝐷
1

as

𝑘𝐷
1
≡ 𝛽(

1 − 𝛾0

𝑝1

𝑝0

)𝛽 (𝑧𝐹 + 𝑝0)𝑘0 − 𝑅𝑏0

𝑝0

.

And it follows that

𝑘𝑅
1

𝑘𝐷
1

=

(
1 − 𝛾0

𝑝1

𝑝0

)−(1−𝛽)
≥ 1.

Equilibrium consistent borrowing limit {𝛾𝑡 } guarantees 1 − 𝛾0

𝑝1

𝑝0

≥ 0. If 𝛾0 > 0, it thus follows

that the demand for capital of the marginal bank if it were to default is strictly lower than the

demand for capital if it were to repay.

Let us consider next the bank at the run threshold, 𝑧𝑅𝑢𝑛 . The demand for capital of this marginal

bank if it repays its debts when facing a run is

𝑘𝑅𝑢𝑛
1

≡ 𝛽
(𝑧𝑅𝑢𝑛 + 𝑝0)𝑘0 − 𝑅𝑏0

𝑝0

. (14)

Note the distinction between (14) and (12): the bank under a run cannot leverage, and thus its

demand for capital is lower than if the same bank repays but faces no run.

If this marginal bank were to default, its demand for capital is the same as it was in (13). Using

the indifference (11), we can rewrite this as

𝑘𝐷
1
=

(
𝑧 + 𝑝1

𝑧 + 𝑝1(1 − 𝑅𝛾0)

)𝛽
𝛽
(𝑧𝑅𝑢𝑛 + 𝑝0)𝑘 − 𝑅𝑏

𝑝0

.

And it follows that

𝑘𝑅𝑢𝑛
1

𝑘𝐷
1

=

(
1 − 𝑅

𝑅𝑘
1

𝑝1

𝑝0

𝛾0

)𝛽
≤ 1.

If 𝛾0 > 0 and 𝑅𝑘
1
> 𝑅, equilibrium consistent {𝛾𝑡 } guarantees 1 ≥ 𝛾0

𝑝1

𝑝0

> 𝛾0

𝑅

𝑅𝑘
1

𝑝1

𝑝0

. That is, the

demand for capital of the marginal bank 𝑧𝑅𝑢𝑛 if it were to repay is strictly lower than the demand

if it is subject to a run and it were to default. This is the opposite of the case at the fundamental

default threshold. That is, the marginal bank at the fundamental threshold demands more capital

than a defaulting bank, while the marginal bank at the run threshold demands less capital than

a defaulting bank. It thus follows that the marginal bank at the run threshold sells more capital

than the marginal bank at the fundamental threshold.
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Notice that at this point, we have not established in which case banks are net sellers or net

buyers. We will examine this once we study the general equilibrium.

To summarize the results of this subsection, for a given sequence of prices, a bank with

𝑧0 = 𝑧𝑅𝑢𝑛 that faces a run (and decides to repay its debts) sells more capital than a bank with

the same productivity that decides to default and a repaying bank at the fundamental default

threshold. As we will see below, this distinction with regard to the demand for capital plays a role

in understanding the effects of a policy that affects the equilibrium price of capital.

2.6 Discussion of modeling choices

Before we turn to the general equilibrium and policy analysis, let us discuss the modeling assump-

tions we made.

Curvature and production. First, we model banks as agents with concave utility that directly

produce the final consumption good. The assumption of curvature in the utility function over

dividends (or equity payouts) captures the fact that issuing equity is costly and delivers smooth

dividend payments, as observed in the data. The assumption that banks make production decisions

is also standard in the macro-finance literature (see, e.g., Gertler and Kiyotaki, 2015) and allows us

to capture in a simple way the financial channel by which banks’ capital affect output.

Short-term debt and deposit insurance. One crucial feature of the model that makes banks

vulnerable to runs is that they issue short-term bonds. Given the reliance of banks on demand

deposits in practice, we think this is a central institutional feature. We take the nature of the

short-term non-state contingent deposits as a primitive in our model.
22

To the extent that a large

fraction of depositors of commercial banks are insured, one can map the model more easily into

investment banks, which indeed played a key role during the collapse of the financial system

in 2008 (see, e.g., Brunnermeier, 2009; Bernanke, 2013). While a large fraction of depositors of

commercial banks may be insured, this insurance is often limited or imperfect in practice. In fact,

the banking turmoil in March 2023 has revealed significant uninsured deposits among commercial

banks and shown that even insured deposits may be prone to runs.
23

Default decision. We have also assumed that banks default strategically (i.e., default is a choice

of the bank not to repay its depositors). To the extent that banks face limited liability and that

22
Standard reasons why issuing short-term debt may be optimal have to do with liquidity benefits (Stein, 2012) or

incentive reasons under asymmetric information (Diamond and Rajan, 2000; Calomiris and Kahn, 1991).

23
Even though insured depositors may recover the totality of their depositors, the bureaucratic cost may prompt

depositors to run, especially given the low costs of switching bank accounts. Another reason why insured deposits

may choose to run is that they may be concerned about the solvency of the insurance funds.
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equity holders can choose in practice whether to capitalize the bank or let it fail, we see this as a

desirable feature of the model. Our assumptions about the cost of defaulting—namely, permanent

exclusion from the bond market and lower productivity—deserve additional comments. Clearly,

in practice, there is a bankruptcy procedure that details specific costs for banks from defaulting.

Our assumptions in this regard are due, for the most part, to tractability reasons, as they allow us

to scale the value of default and derive a tractable representation of the value of the bank under

repayment facing a leverage constraint; however, we will see below that the results of our policy

analysis do not hinge on the specific assumptions on default costs. At the same time, it is worth

noting that the assumption accounts for certain realistic features. For example, equity holders

often perceive positive payoffs even around bankruptcy. For example, investment banks that failed

or were bailed out in the 2008 financial crisis, such as Lehman Brothers or Bear Stearns, paid almost

as many dividends in the run-up to the crisis as in the years preceding the crisis. As observed by

Acharya, Gujral, Kulkarni and Shin (2022) and Acharya, Le and Shin (2017), paying dividends in

such circumstances constitutes a transfer of resources from bondholders to shareholders. More

recently, Credit Suisse shareholders in March 2023 perceived positive payoffs, while some of the

bondholders did not.
24

Finally, our assumption about productivity losses upon default is related to the fact that we

are, in effect, consolidating financial and non-financial firms into a single entity by allowing

banks to manage the capital stock directly. In turn, the empirical evidence shows that bank

failures cause dislocations for firms that hold lending relationships with the failing banks (see,

e.g., Fukuda, Kasuya and Akashi, 2009; Chodorow-Reich, 2014; May, 2014). As we saw, these

modeling assumptions generate endogenously a borrowing constraint on banks similar to those

in the literature, in which firms or banks can walk away from their obligations and abscond with

funds from creditors or shareholders (e.g., Gertler and Kiyotaki, 2010).

Overall, these modeling assumptions allow us to embed self-fulfilling runs in a tractable

dynamic general equilibrium model and to transparently analyze the effect of macroeconomic

policies. We turn next to characterize the general equilibrium properties of the model.

24
Historically, when a bank is close to bankruptcy, the government often intervenes to sell the bank so that

shareholders recover a positive amount that is increasing in the value of the asset holdings. Two examples are

Bear Stearns and Merrill Lynch in 2008. The former was acquired by JP Morgan in the face of extensive conflicts

between bondholders and shareholders about who would face the burden of the losses (see Landon Thomas Jr., “It’s

Bondholders vs. Shareholders in a Race to Buy Bear Stearns Stock,” New York Times, March 19, 2008). In the case of

Merrill Lynch, investors lost confidence in its sustainability during the same week Lehman filed for bankruptcy, and

Bank of America acquired it through the active intervention of the Federal Reserve (see, e.g., Gretchen Morgenson,

“The Reckoning: How the Thundering Herd Faltered and Fell,” New York Times, Nov 8, 2008). Extensive cross-country

evidence about the resolution of banking crises is collected in the series of case studies in the Journal of Financial
Crises.
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3 General Equilibrium

In the previous section, we described the problem of an individual bank in partial equilibrium

for a given price of capital {𝑝𝑡 }. We showed how the borrowing limits {𝛾𝑡 } are determined and

discussed the differences between fundamental defaults and runs. In this section, we close the

model by clearing the capital market.

As mentioned above, the economy is populated by a measure one of banks, which are assumed

to be identical at the beginning of time. That is, each bank starts with 𝑘0 =𝐾 units of the capital

stock and a debt level 𝑏0 = 𝐵0 in period 𝑡 = 0.

The occurrence of equilibrium default is limited to the initial period, 𝑡 = 0. To reiterate, any

bank with a productivity level, 𝑧0, below 𝑧𝐹 will inevitably default at 𝑡 = 0. However, for banks

with productivity levels between 𝑧𝐹 and 𝑧𝑅𝑢𝑛 , there are multiple potential equilibrium outcomes.

Within this range, if a creditor anticipates that other creditors will withdraw their funds and the

bank will default, it is optimal for that creditor also to withdraw its funds, leading to the bank’s

default. On the other hand, if a creditor expects other creditors to extend their loans, they will

continue to lend to the bank, preventing its default. Consequently, the presence of a non-empty

interval (𝑧𝐹 , 𝑧𝑅𝑢𝑛) allows for multiplicity.
25

We focus on threshold equilibria.
26

That is, our general equilibrium definition (provided below)

requires a default threshold, denoted as 𝑧, such that all banks with a productivity level below 𝑧

at time 𝑡 = 0 default, and all those with a productivity level above, it repay. This means that the

proportion of banks defaulting at time 𝑡 = 0 is given by 𝐹 (𝑧). We consider two polar cases:

• In the first case, there are no runs, and we set 𝑧 = 𝑧 𝑓 .

• In the second case, any bank that is susceptible to a run defaults at time 𝑡 = 0, meaning

𝑧 = 𝑧𝑅𝑢𝑛 .

Let 𝑁𝑡 denote the total net worth of all repaying banks, and 𝑁𝐷
𝑡 the total net worth of all

defaulting banks. In period 𝑡 = 0, we have that

𝑁0 =

∫ 𝑧

𝑧

((𝑧0 + 𝑝0)𝐾 − 𝑅𝐵0)𝑑𝐹 (𝑧0) (15)

𝑁𝐷
0
= 𝐹 (𝑧) (𝑧𝐷 + 𝑝0)𝐾. (16)

25
In Amador and Bianchi (2021) we showed that in the absence of runs, the model features unique equilibrium

asset prices given a share of defaulting banks in period 𝑡 = 0 (see Proposition 4). A similar result carries over here. In

that paper, we also showed that the stationary equilibrium is unique in the absence of runs. This result contrasts with

with the framework of Gertler and Kiyotaki (2015), which has multiple equilibrium asset prices.

26
In Section 5, we explore an extension to this equilibrium selection procedure.
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Using the linearity of the policy rules from Lemmas 1 and 2, we can trace out the aggregate

net worth evolution:

𝑁𝑡+1 = 𝛽𝑅
𝑒
𝑡+1
𝑁𝑡 (17)

𝑁𝐷
𝑡+1

= 𝛽𝑅𝐷𝑡+1
𝑁𝐷
𝑡 (18)

for all 𝑡 ≥ 0 (where we exploit that the return to equity is the same for all banks).

For every 𝑡 ≥ 0, let 𝐾𝐷𝑡 denote the total capital holdings of defaulting banks, and let 𝐾𝑅𝑡 denote

the total capital holdings of the banks that repay. Let 𝛿𝑡+1 and 𝜅𝑡+1 denote optimal policies for

debt and capital in period 𝑡 for a repaying bank that starts with net worth equal to 1. Let 𝜅𝐷𝑡+1
be

an optimal capital policy for a defaulting bank with (defaulted) net worth equal to 1. Then, the

linearity of the policy functions implies that total debt and capital levels are given by

𝐵𝑡+1 = 𝛿𝑡+1𝑁𝑡 (19a)

𝐾𝑅𝑡+1
= 𝜅𝑡+1𝑁𝑡 (19b)

𝐾𝐷𝑡+1
= 𝜅𝐷𝑡+1

𝑁𝐷
𝑡 (19c)

for all 𝑡 ≥ 0.

Finally, market clearing requires that at all times,

𝐾𝐷𝑡 + 𝐾𝑅𝑡 =𝐾 (20)

for all 𝑡 ≥ 1. With this, we can define a general equilibrium, encompassing both the case without

runs and the case with runs:

Definition 2 (General Equilibrium). A competitive equilibriumwith default threshold 𝑧 is a sequence

of prices of capital, {𝑝𝑡 }∞𝑡=0
, a sequence of borrowing limits, {𝛾𝑡 }∞𝑡=0

, and a sequence of net worths,

debt and capital holdings, {𝑁𝑡 , 𝑁𝐷
𝑡 , 𝐵𝑡 , 𝐾

𝑅
𝑡 , 𝐾

𝐷
𝑡 }∞𝑡=0

, such that

(i) the evolution of net worth follows (17) and (18) with initial conditions given by (15) and

(16);

(ii) for all 𝑡 ≥ 0, total debt and capital holdings follow equations (19a), (19b), and (19c) with

𝛿𝑡+1 = B𝑡+1(1), 𝜅𝑡+1 = K𝑅
𝑡+1

(1), and 𝜅𝐷𝑡+1
= K𝐷

𝑡+1
(1), and where B𝑡+1, K𝑅

𝑡+1
K𝐷
𝑡+1

are optimal

policy functions that solve the banks’ problem in repayment and default, respectively, given

{𝛾𝑡 } and {𝑝𝑡 };

(iii) the borrowing limits are equilibrium consistent; that is, Definition 1 is satisfied;
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(iv) markets clear; that is, equation (20) holds for all 𝑡 ≥ 1; and

(v) the threshold 𝑧 is defined by (10) in the case of only fundamental defaults; and by (11) in

the case of runs.

Equilibrium characterization.

At 𝑡 = 0, the state variable is the aggregate amount of debt 𝐵0 (recall that all banks start with the

same amount of capital and debt). Depending on the initial level of debt, there are three possible

equilibrium scenarios.

When the debt level is very low, all banks repay. That is, at the market clearing sequence of

asset prices, the default thresholds (10) and (11) with fundamentals and runs, respectively, are

such that even the bank with the lowest productivity still finds it optimal to repay. In the case of

𝛽𝑅 < 1, the economy features a transition towards a stationary equilibrium in which aggregate

debt and asset prices remain constant at 𝑝𝑅 =
𝛽𝑧

1−𝛽−(1−𝛽𝑅)𝛾𝑅 and 𝛾𝑅 satisfies (9) given the constant

price 𝑝𝑅 . Given that policies are linear in individual net worth, all banks’ net worth evolves at the

same rate independent of their initial productivity, and aggregate dynamics can be characterized

in terms of the aggregate net worth. As we showed in Amador and Bianchi (2021), the dynamics

are as follows: For 𝑇 periods, the return to capital is exactly R, aggregate net worth decreases

at rate 𝛽𝑅, and the borrowing constraint does not bind. In period 𝑇 , the borrowing constraint

binds, the return to capital is higher than 𝑅, and the economy remains at a stationary repayment

equilibrium thereafter.
27

When the debt level is very high, all banks default. In this case, the economy transitions

immediately to a stationary equilibrium in which the market clearing price is 𝑝𝑡 =
1

1−𝛽𝑧
𝐷

. The

economy falls into this stationary default equilibrium whenever the debt level is such that the

highest productivity bank exceeds the thresholds (10) and (11) with fundamentals and runs,

respectively.

When the debt is an intermediate region, we have a fraction of banks defaulting. Specifically,

those banks with productivity below the corresponding threshold default, and those with produc-

tivity above it repay. As shown above, repaying banks buy more capital than defaulting banks,

implying that in general equilibrium, repaying banks are on average net buyers of capital, while

defaulting banks are net sellers. Over time, this means that defaulting banks shrink while repaying

banks grow, and thus the economy converges to the same stationary equilibrium analyzed above

(i.e., one in which 𝑝𝑅 =
𝛽𝑧

1−𝛽−(1−𝛽𝑅)𝛾𝑅 and 𝛾𝑅 satisfies (9)).

27
In the case of 𝛽𝑅 = 1, the return on capital equals the interest rate for all 𝑡 and the portfolios of individual banks

is undetermined. Moreover, net worth of individual banks is constant and thus, the aggregate amount of debt remains

constant for all 𝑡 .
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Let us illustrate these results by simulating the model numerically for different initial values

of aggregate debt 𝐵0. In Figure 1, we present three key variables in three panels as a function of

the initial debt level: (a) the fraction of banks that default 𝐹 (𝑧); (b) the initial price of capital 𝑝0;

and (c) the initial share of capital held by repaying banks for a range of initial values of debt 𝐾𝑅
1
/𝐾.

The red dashed line corresponds to the economy with runs, and the blue solid line corresponds to

the economy in which we shut down the possibility of runs.

As Figure 2 shows, the fraction of defaulting banks increases continuously with the debt level

until the point at which all banks default. In addition, the price of capital and the share of capital

held by repaying banks fall monotonically with the level of debt. One can also see that as the

share of banks defaulting approaches one, the price of capital becomes constant at the stationary

level 𝑝𝐷 , and repaying banks hold zero capital.

The figure also shows that for intermediate values of debt, the share of defaulting banks is

higher in the presence of runs. In line with the above characterization, runs reduce the default

threshold for given asset prices. Moreover, in general equilibrium, the fact that more banks default

in the presence of runs implies that capital prices are lower. This reflects that the demand for

capital is higher for non-defaulting banks.

(a) Fraction of defaults (b) Price of Capital 𝑝0
(c) Capital Repaying Banks

Figure 1: Transitional dynamics for a range of values of 𝐵0

Notes: The simulation was generated using 𝑅 = 1.06, 𝛽 = 0.8/𝑅, 𝑧𝐷 = 𝛽/(1 − 𝛽), 𝑧 = 1.02𝑧𝐷 , 𝐾 = 1, and a

uniform distribution of 𝑧0 between [0.98𝑧, 1.02𝑧].

Figure 2 zooms in on the model simulations by focusing on an intermediate value of debt for

which we have positive defaults in equilibrium. The figure presents the evolution of the price of

capital, the leverage threshold, and the share of capital held by repaying banks over time. As the

figure shows, both economies (with and without runs) converge in the long run to the stationary
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(a) Price of Capital 𝑝𝑡 (b) Leverage Threshold 𝛾𝑡 (c) Capital Repaying Banks

Figure 2: Transition dynamics

Notes: The simulation was generated using 𝑅 = 1.06, 𝛽 = 0.8/𝑅, 𝑧𝐷 = 𝛽/(1 − 𝛽), 𝑧 = 1.02𝑧𝐷 , 𝐾 = 1, 𝐵0 = 0.092 ,

and a uniform distribution for 𝑧0 between [0.98𝑧, 1.02𝑧] .

equilibrium in which the price of capital is 𝑝𝑅 and all the capital is held by repaying banks.
28

Recall that the net worth of defaulting banks evolves at a rate 𝛽𝑅𝐷 , which is less than one in

general equilibrium, and so asymptotically, they hold zero capital. Importantly, repaying banks

hold a lower share of capital in the transition in the economy where banks face runs. Again, this

reflects that more banks are defaulting, which in turn implies lower demand for capital and lower

prices of capital.

Banks’ welfare in equilibrium.

Given the default threshold 𝑧, the ex-ante payoff of a bank at the beginning of 𝑡 = 0 (before the

realization of 𝑧0),𝑊 (𝑧), is

𝑊 (𝑧) ≡
∫ 𝑧

𝑧

𝑉 𝑅
0
((𝑧0 + 𝑝0)𝐾 − 𝑅𝐵0)𝑑𝐹 (𝑧0) + 𝐹 (𝑧)𝑉 𝐷

0
((𝑧𝐷 + 𝑝0)𝐾). (21)

Keeping all other equilibrium objects constant, we can compute the effect on the ex-ante payoff of

a change in the threshold 𝑧:

𝑊 ′(𝑧) = −𝑓 (𝑧) (𝑉 𝑅
0
((𝑧0 + 𝑝0)𝐾 − 𝑅𝐵0) −𝑉 𝐷

0
((𝑧𝐷 + 𝑝0)𝐾)) (22)

Note that when evaluated at 𝑧𝐹 ,𝑊 ′(𝑧𝐹 ) = 0, the marginal bank is indifferent between repaying or

defaulting, and thus an exogenous change in the default threshold has no first-order effect on the

28
To understand the evolution of the price of capital, recall that in period 𝑡 = 0, we have a distribution of bank

productivities under repayment. Given that we set a distribution of 𝑧0 centered on 𝑧, the average of productivity

conditional on repayment is higher in period 𝑡 = 0 than at 𝑡 = 1. On the other hand, from 𝑡 ≥ 1, productivity is

constant and, therefore the evolution of the price of capital is monotonic from 𝑡 = 1 onward.
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bank’s payoff.
29

Under runs, when 𝑧 = 𝑧𝑅𝑢𝑛 , if 𝛾0 > 0 and 𝑅𝑘
1
> 𝑅, we have that

𝑉 𝑅
0
((𝑧𝑅𝑢𝑛 + 𝑝0)𝐾 − 𝑅𝐵0)) > 𝑉 𝐷

0
((𝑧𝐷 + 𝑝0)𝐾)) .

Even though the marginal bank that defaults under a run is indifferent between defaulting and

repaying, it is strictly better off if it does not face a run and repays. This reflects the costs of the

coordination failure of runs: a solvent bank at the margin is defaulting because of a run. According

to equation (22),𝑊 ′(𝑧𝑅𝑢𝑛) < 0. That is, an exogenous reduction in the default threshold strictly

increases the bank’s ex-ante payoff.

Regarding creditors, for a given size of the initial debt 𝐵0, a decrease in the default threshold

raises creditors’ payoffs as they are repaid with higher probability, while an increase in the

threshold lowers their payoff.

4 A Credit-Easing Policy

In this section, we turn to government policies. Our objective is to compare the effects of policy

interventions when equilibrium defaults are driven by fundamentals or runs. We focus attention

on ex-post policies—that is, policies that take place at 𝑡 = 0 for a given initial level of aggregate

debt that is maturing at that period.
30

One inefficiency at play in our model emerges from the presence of an equilibrium price (the

price of capital) in the determination of a bank’s default option. As shown in Kehoe and Levine

(1993), this can lead to inefficiencies in the market equilibrium. As we will see below, however, the

presence of runs introduces another reason for policy intervention (coordination failures), which

is the main focus of the analysis in this section.

4.1 Equilibrium with credit easing policy

We consider a “credit-easing” policy in which the government purchases capital at 𝑡 = 0, holds it

for one period, and sells it back at 𝑡 = 1.
31

After 𝑡 > 1, the government does not intervene. We

assume that the government is less productive than a defaulting bank: a unit of capital in the

29
Of course, such a change will have equilibrium effects on prices and 𝛾 ’s, but we are ignoring them here.

30
As mentioned in the literature review, many studies in the banking literature examine policies to deal with the

coordination failure driving runs, such as lender of last resort, freezing of deposits, or deposit insurance. There are

generally well-known trade-offs associated with these policies. Our focus is on government policies that operate

through general equilibrium effects. We also leave the issue of how policies affect the ex-ante borrowing decisions

and welfare for future work.

31
Bernanke (2009) describes the program of asset purchases in the 2008 financial crisis as “credit easing.”
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hands of the government has a productivity of 𝑧𝑔 < 𝑧𝐷 ; thus, holding capital entails a cost. To

finance the purchases of capital, the government taxes banks in period 𝑡 = 0 and borrows at the

interest rate 𝑅. Note that in this exercise, the government is not taxing banks in any period after

𝑡 = 0: we are not granting the government the ability to bypass the borrowing constraint of banks

through its taxation power.
32

We assume that the tax takes the form of a proportional tax on net worth in period 𝑡 = 0.
33

Let 𝜏0 denote the tax that the government imposes on banks in period 𝑡 = 0, and let 𝐾𝑔 denote the

units of capital that the government purchases. The post-tax net worth of banks in period 𝑡 = 0 is

then

𝑁0 = (1 − 𝜏0)
∫ 𝑧

𝑧

((𝑧0 + 𝑝0)𝐾 − 𝑅𝐵0)𝑑𝐹 (𝑧0), (23)

𝑁𝐷
0
= (1 − 𝜏0) (𝑧𝐷 + 𝑝0)𝐹 (𝑧)𝐾. (24)

And using that the government repays the debt in period 𝑡 = 1 by selling its holdings of capital,

we can write the government intertemporal budget constraint as

𝑝0𝐾
𝑔 − 𝜏0

1 − 𝜏0

(𝑁0 + 𝑁𝐷
0
) = 1

𝑅
(𝑧𝑔 + 𝑝1)𝐾𝑔, (25)

where the right-hand side is the discounted value of the revenue from using and selling the capital

in period 𝑡 = 1.

The values for repaying and defaulting banks are analogous to those obtained before in the

case without the policy intervention, but with the difference that the initial net worth now

incorporates the taxes needed to finance the purchases of capital by the government. Given prices

and borrowing limits, the value functions remain as before, but now using these post-tax net

worth values. It thus follows that the default thresholds 𝑧𝐹 and 𝑧𝑅𝑢𝑛 remain unaltered given a

sequence of prices and borrowing limits. That is, they are given by equations (10) and (11).

The market clearing condition for capital at time 𝑡 = 0 now becomes

𝐾𝐷
1
+ 𝐾𝑅

1
+ 𝐾𝑔 =𝐾 (26)

and remains as before for all 𝑡 ≥ 1.

We can now define a general equilibrium with the policy:

Definition 3. A competitive equilibrium with a credit easing policy (𝜏0, 𝐾
𝑔) and default threshold 𝑧

32
This ability can be beneficial, as shown in Woodford (1990).

33
An alternative approach is to use a lump-sum tax instead. The main results regarding the effects of changes in

policy are not sensitive to this choice, but the proportional tax on net worth has the property that (given prices and

borrowing limits) the default thresholds are not directed affected by the policy.
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is a sequence of prices of capital, {𝑝𝑡 }∞𝑡=0
, a sequence of borrowing limits, {𝛾𝑡 }∞𝑡=0

, and a sequence

of net worth, debt and capital holdings, {𝑁𝑡 , 𝑁𝐷
𝑡 , 𝐵𝑡 , 𝐾

𝑅
𝑡 , 𝐾

𝐷
𝑡 }∞𝑡=0

such that

(i) the evolution of net worth follows (17) and (18), with initial conditions given by (23) and

(24);

(ii) for all 𝑡 ≥ 0, total debt and capital holdings follow equations (19a), (19b), and (19c) with

𝛿𝑡+1 = B𝑡+1(1), 𝜅𝑡+1 = K𝑅
𝑡+1

(1), and 𝜅𝐷𝑡+1
= K𝐷

𝑡+1
(1), and where B𝑡+1, K𝑅

𝑡+1
K𝐷
𝑡+1

are optimal

policy functions that solve the banks’ problem in repayment and default, respectively, given

{𝛾𝑡 } and {𝑝𝑡 };

(iii) the borrowing limits are equilibrium consistent; that is, Definition 1 is satisfied;

(iv) markets clear, that is, equation (26) holds at 𝑡 = 1, and (20) holds for all 𝑡 > 1;

(v) the threshold 𝑧 is defined by (10) in the case of only fundamental defaults; and by (11) in

the case of runs;

(vi) the government budget constraint, equation (25), holds.

As a final detail, in this definition of equilibrium, we are granting the government the ability

to hold the capital stock (albeit unproductively). Yet, we have not allowed creditors to do the same.

Assuming that the productivity of creditors is the same as the government’s, creditors will not

hold capital if their return, 𝑅
𝑔

1
, is lower than their discount factor, 𝑅. So, if

𝑅
𝑔

1
≡ 𝑧𝑔 + 𝑝1

𝑝0

≤ 𝑅, (27)

then creditors will not hold capital, even if allowed. We are going to focus attention to equilibria

in which the above condition holds. This condition allows us to evaluate whether the government

may want to purchase capital when creditors are able but unwilling to do so.

Note that inequality (27) implies that the government loses resources by intervening, and as a

result, it needs to tax banks in order to finance its capital purchases. We can see this by noticing

that the government’s budget constraint can be rewritten as

𝜏0

1 − 𝜏0

(𝑁0 + 𝑁𝐷
0
) =

𝑅 − 𝑅𝑔
1

𝑅
𝑝0𝐾

𝑔 ≥ 0, (28)

for 𝐾𝑔 ≥ 0, where the inequality inherits the strictness of (27). We have then narrowed our

attention to a policy that is unprofitable for the government (and undesirable for creditors),

requires the taxation of banks at time 𝑡 = 0, and may entail an efficiency loss.
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4.2 The effect of credit easing

In this section, we provide a theoretical approach for assessing the effects of a credit easing

policy in the general equilibrium of the model. We then complement this analysis with numerical

simulations.

An important component of a general equilibrium is the default threshold, which determines

the share of defaulting banks and affects the dynamics that follow. As stated previously, the

proportional tax on net worth used by the government to finance its purchases of capital leaves

the default thresholds 𝑧𝐹 and 𝑧𝑅𝑢𝑛 determined by the same equations, (10) and (11). Thus, the

thresholds are influenced by the policy only through general equilibrium effects–, that is, only

through changes in prices (and the corresponding equilibrium borrowing limits).

To make headway in this subsection, we are going to analyze the general equilibrium effects

that are induced by the change in the price of capital at the moment of the policy, 𝑝0, while keeping
constant all future prices {𝑝𝑡 }∞𝑡=1

.
34

The latter implies that the sequence of borrowing limits {𝛾𝑡 }∞𝑡=0

also remains unchanged, given Proposition 1. So we narrow the question to how the policy, 𝐾𝑔,

affects the default thresholds through its impact on 𝑝0.

An increase in the price of capital. Recall that the default thresholds are determined according

to the following indifference condition:

𝑉 ((1 − 𝜏0) ((𝑧 + 𝑝0)𝐾 − 𝑅𝐵0)) = 𝑉 𝐷
0
((1 − 𝜏0) (𝑧𝐷 + 𝑝0)𝐾),

with 𝑉 = 𝑉 𝑅
0

, 𝑧 = 𝑧𝐹 , in the case of of the fundamental threshold, and 𝑉 = 𝑉 𝑅𝑢𝑛
0

, 𝑧 = 𝑧𝑅𝑢𝑛, in

case of the run threshold. The log-linear functional forms of the value functions, characterized in

Lemmas 1 and 2, imply that the tax can be canceled in the above equation, and the indifference

condition becomes 𝑉 ((𝑧 + 𝑝0)𝐾 − 𝑅𝐵0) = 𝑉 𝐷
0
((𝑧𝐷 + 𝑝0)𝐾).

Assuming that the default threshold 𝑧 is interior, we can differentiate the above expression

with respect to 𝑝0 and obtain

𝑉 ′(𝑛(𝑝0))
𝑑𝑧

𝑑𝑝0

=
𝑑𝑉 𝐷

0
(𝑛𝐷 (𝑝0))
𝑑𝑝0

− 𝑑𝑉 (𝑛(𝑝0))
𝑑𝑝0

,

where 𝑛(𝑝0) = (𝑧+𝑝0)𝐾−𝑅𝐵0 and 𝑛𝐷 (𝑝0) = (𝑧𝐷 +𝑝0)𝐾. The two total derivatives on the right-hand

side capture two effects: the change in the value because of the change in returns and the change

in the values because of the changes in net worth.

The equation tells us that the response of the default threshold to a (marginal) increase in the

34
In a general equilibrium, all prices respond to the policy, but we leave the discussion of these additional effects to

the numerical simulations.
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price depends on whether the repaying or the defaulting bank is hurt relatively more by the price

increase. This is intuitive: if the value of defaulting increases at the margin more than the value

of repaying, then the default threshold increases (and more banks default in equilibrium). The

opposite occurs if the value of repaying increases at the margin more than the value of defaulting.

Consider the marginal bank. Let 𝑘1 denote the amount of capital it purchases if it repays.

Specifically, 𝑘1 = 𝑘
𝑅
1

in case of a fundamental threshold, and 𝑘1 = 𝑘
𝑅𝑢𝑛
1

in case of a run threshold.

Let 𝑘𝐷
1

denote the amount of capital the bank purchases if it defaults. These capital demand values

are given by equations (12), (13), and (14), setting 𝑘0 =𝐾 and 𝑏0 = 𝐵0.

Differentiating the value functions (2) and (4) with respect to 𝑝0 and replacing in the expression

above, we obtain

𝑉 ′(𝑛(𝑝0))
𝑑𝑧

𝑑𝑝0

= −
(
𝑘𝐷

1

𝐾
− 1

)
𝑉 𝐷′

0
(𝑛𝐷 (𝑝0)) +

(
𝑘1

𝐾
− 1

)
𝑉 ′(𝑛(𝑝0)), (29)

where the first term in square brackets is the net purchases of capital of a marginal bank if it

defaults, and the second term is its net purchases if it repays. The formula conveys a straightforward

intuition that arises from the envelope condition: an increase in the price of capital hurts a bank if

it is a net buyer, while it benefits the bank if it is a net seller. The increase in the price reduces

the value of the bank, depending on the net amount of capital it purchases. The formula simply

reflects the difference of these effects of the price on the value of repaying and defaulting, each

weighted by their marginal valuations.

Note that marginal valuations are equal to the inverse of marginal utilities. Exploiting the

logarithmic utility, we have that

𝑉 𝑅′
0
(𝑛) = 𝑉 𝑅𝑢𝑛′

0
(𝑛) = 1

(1 − 𝛽)𝑛 , and 𝑉 𝐷′
0

(𝑛𝐷) = 1

(1 − 𝛽)𝑛𝐷
,

For the run threshold, 𝑧𝑅𝑢𝑛 , equation (29) then implies

𝑑𝑧𝑅𝑢𝑛

𝑑𝑝0

=
𝑘𝑅𝑢𝑛

1

𝑘𝐷
1

− 1 ≤ 0,

with strict inequality if 𝛾0 > 0 and 𝑅𝑘
1
> 𝑅. This inequality follows from the discussion in Section

2.5, which showed that 𝑘𝐷
1
≥ 𝑘𝑅𝑢𝑛

1
. Thus, the increase in the price reduces defaults under the run

scenario. Under a run, marginal repaying banks facing runs are selling more capital than if they

were to default and thus benefit from an increase in the price.

The case under fundamental defaults is as follows. On the one hand, a repaying bank at the

fundamental threshold is buying more capital than if it were to default (the opposite of the above).
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So, a price increase hurts the repaying bank relatively more and is a force towards increasing the

threshold. But on the other hand, a repaying bank at the threshold has a lower marginal utility,

generating a force towards the other direction if 𝑘𝑅
1
<𝐾. Note that if 𝑘𝑅

1
>𝐾, so the marginal bank

that repays is a net buyer, then 𝑑𝑧𝐹/𝑑𝑝0 > 0; that is, the increase in the price leads to more defaults
in the case of fundamental defaults. Although 𝑘𝑅

1
> 𝐾 is sufficient for this adverse effect of the

increase in 𝑝0, it is not necessary.

We summarize below the key takeaway regarding the impact that asset prices have on the

marginal bank, depending on whether it is at the fundamental default threshold or at the run

threshold.

Remark. An increase in the capital price in period 0 (while maintaining borrowing limits and all
other prices constant) reduces the share of defaulting banks in the presence of runs. If the marginal
bank at the fundamental threshold is a net buyer of assets, the share of defaulting banks increases in
the absence of runs.

The policy, the price, and market clearing. The final element to discuss before moving on to

the numerical analysis is the effect of the credit easing policy on the market clearing price.

Whether we are in a run scenario or not, the capital demand that is relevant for the market

clearing condition is the “no-runs” capital demand (i.e., the demand for a bank that repays and

does not suffer a run). In our model, as in Cole and Kehoe (2000), a bank that repays while suffering

a run is an out-of-equilibrium event. The market clearing condition for capital in period 𝑡 = 0 can

be rewritten as

(1 − 𝜏0)
[∫ 𝑧

𝑧

𝑘𝑅
1
(𝑧0)𝑑𝐹 (𝑧0) + 𝑘𝐷1 𝐹 (𝑧)

]
=𝐾 − 𝐾𝑔,

where 𝑘𝑅
1
(𝑧0) represents the demand for capital for a bank that does not suffer a run and repays

with a net worth (𝑧0 + 𝑝0)𝐾 − 𝑅𝐵0. We explicitly write the dependence of this capital demand on

the period 0 productivity draw, 𝑧0, as it encompasses not just the marginal bank at the relevant

default threshold but all banks above that threshold. As before, we let 𝑘𝐷
1

denote the demand for

capital for a defaulting bank with net worth (𝑧𝐷 + 𝑝0)𝐾. The (1 − 𝜏0) factor that pre-multiplies

capital demand captures the effect of the tax on net worth.

Assuming again that the threshold is interior and continuing to ignore all the general equilib-

rium effects on prices other than 𝑝0, we can differentiate the market clearing condition above to

obtain

(1−𝜏0)
[∫ 𝑧

𝑧

𝑑𝑘𝑅
1
(𝑧0)

𝑑𝑝0

𝑑𝐹 (𝑧0) +
𝑑𝑘𝐷

1

𝑑𝑝0

𝐹 (𝑧) − (𝑘𝑅
1
(𝑧) − 𝑘𝐷

1
) 𝑓 (𝑧0)

𝑑𝑧

𝑑𝑝0

]
𝑑𝑝0

𝑑𝐾𝑔
− 𝐾 − 𝐾𝑔
(1 − 𝜏0)

𝑑𝜏0

𝑑𝐾𝑔
= −1, (30)
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The right-hand side of the above expression shows we must have a reduction in the aggregate

capital demand by banks to accommodate the government purchases. On the left hand-side, the

terms in square brackets capture the effect of an increase in the price 𝑝0 on the aggregate capital

demands. It contains three terms: the inframarginal effect on the demand from repaying banks,

the inframarginal effect on the demand from defaulting banks, and the marginal effect due to the

change in the threshold. The final term on the left-hand side captures the reduction in demand

due to the increase in the proportional tax required to finance the capital purchases.

It is straightforward to see, by inspecting (13), that 𝑑𝑘𝐷
1
/𝑑𝑝0 is negative. The effect on the

inframarginal demand from repaying banks can also be shown to be negative (starting from

𝐾𝑔 = 0):

Lemma 4. Consider a general equilibrium without a credit easing policy (𝜏0 = 0, 𝐾𝑔 = 0) and
associated prices {𝑝0}, borrowing limits, {𝛾𝑡 }, and default threshold 𝑧 ∈ (𝑧, 𝑧). Then,∫ 𝑧

𝑧

𝑑𝑘𝑅
1
(𝑧0)

𝑑𝑝0

𝑑𝐹 (𝑧0) ≤ 0,

where the derivative represents a marginal change in 𝑝0 keeping all other prices {𝑝𝑡+1} and borrowing
limits {𝛾𝑡 } unchanged.

Proof. See Appendix A.4. □

Let us consider a situation like the lemma, starting from a no credit easing policy, but where

the prices are such that 𝑅
𝑔

1
= 𝑅. In that case, a marginal increase in 𝐾𝑔 from 0 has a zero first-order

effect on the tax 𝜏0, as can be seen from the budget constraint (28). And thus, the last term on the

left-hand side of (30) is zero. In the case of fundamental defaults, we have that 𝑧 = 𝑧𝐹 . Recall again

that 𝑘𝑅
1
(𝑧𝐹 ) ≥ 𝑘𝐷

1
, and thus if 𝑑𝑧𝐹/𝑑𝑝0 ≥ 0; (as expected given our previous discussion), then all

terms inside the square brackets of equation (30) are negative. This implies that 𝑑𝑝0/𝑑𝐾𝑔 > 0, that

is, the credit easing policy requires an increase in the price of capital at 𝑡 = 0, 𝑝0.

For the run threshold, 𝑧𝑅𝑢𝑛, we have argued previously that 𝑑𝑧𝑅𝑢𝑛/𝑑𝑝0 ≤ 0. However,

𝑘𝑅
1
(𝑧𝑅𝑢𝑛) ≥ 𝑘𝑅

1
(𝑧𝐹 ), given that 𝑧𝑅𝑢𝑛 ≥ 𝑧𝐹 , so it is no longer clear that the sum of all the terms

within the square brackets of equation (30) is negative. If this were the case, then it would follow

that 𝑑𝑝0/𝑑𝐾𝑔 > 0, and again, the credit easing policy would induce an increase in the price of

capital at 𝑡 = 0 (starting from 𝑅
𝑔

1
= 𝑅).

Takeaway. To the extent that government losses from holding assets are not too large and that

credit easing increases asset prices, the above analysis suggests that credit easing has positive

effects on welfare in the presence of runs. In summary, the conclusion follows from three points

highlighted above: (i) marginal banks facing a run have lower net purchases of capital than
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defaulting banks, as shown in Section 2.5; (ii) an increase in asset prices reduces the default

threshold; and (iii) a decrease in the default threshold increases banks’ welfare. On the other hand,

in the economy without runs, to the extent that the marginal bank is a net buyer, credit easing

increases the number of defaulting banks.

4.3 Numerical results

In the preceding analysis, we have taken an important short-cut: we have assumed that only the

initial price, 𝑝0, was affected by the policy. General equilibrium will potentially require changes

in all subsequent prices, {𝑝𝑡+1}, and, as a result, changes in the borrowing limits {𝛾𝑡 } as well. To

see whether the above theoretical results generalize, we move on to study a numerical simulation

of our model.

Figure 3 illustrates how the credit easing policy affects the default threshold depending on

whether banks are subject to runs. Panel (a) presents the economy where banks are subject to runs.

The figure presents the difference between the value function of repaying while facing a run and the

value of defaulting at 𝑡 = 0, as a function of productivity 𝑧0, for 𝐾𝑔 = 0 and 𝐾𝑔 = 1% (labeled in the

plot as “no policy” and “credit easing” respectively). The solid line indicates the difference in values

when there is no policy intervention, and the dashed line indicates the difference in values when

there is a credit-easing policy. The two solid dots represent the respective productivity threshold

of the marginal bank (i.e., the productivity that makes a bank indifferent between repaying and

defaulting). As one can see, the intervention shifts the curve to the left. The implication is that the

default threshold is reduced, and fewer banks default. As highlighted above, the mechanism is

that credit easing raises asset prices at time 0, increasing the value of repaying, because banks

facing a run are net sellers of capital and benefit from the rise in asset prices. Thus, as argued in

the theoretical analysis above, credit easing contributes to reducing defaults in an economy facing

runs.

Panel (b) shows the economy when banks are not subject to runs. The figure presents again

the difference between the value of repayment and defaulting as a function of initial productivity

𝑧0, but this time the value from repaying corresponds to the value of repaying while being safe.

In contrast to the case with runs, the curve now rotates slightly to the right while the threshold

remains about the same.
35

35
The higher is the productivity 𝑧0, the larger the net buyer position. Thus, the rotation to the right indicates

that the value of repaying falls relative to the value of default for relatively high productivity and increases for low

productivity.

31



(a) 𝑉 𝑅𝑢𝑛 −𝑉 𝐷
(b) 𝑉 𝑅 −𝑉 𝐷

Figure 3: Credit Easing and Default Thresholds

Notes: The simulation was generated using 𝑅 = 1.06, 𝛽 = 0.8/𝑅, 𝑧𝐷 = 𝛽/(1−𝛽), 𝑧 = 1.02𝑧𝐷 , 𝐾 = 1, 𝐵0 = 0.092,

𝑧𝑔 = 1

5
𝑧𝐷 , and a uniform distribution for 𝑧0 between [0.98𝑧, 1.02𝑧]. Panel (a) corresponds to the economy

with runs and panel (b) corresponds to the economy without runs.

Figure 4 presents the results of credit easing for different levels of 𝐾𝑔. The three panels show

the share of defaulting banks (panel [a]), the level of initial asset prices 𝑝0 (panel [b]), and banks’

welfare as a function of 𝐾𝑔 (panel [c]). The red dashed line represents the economy with runs,

and the blue solid line shows the economy in which defaults are due only to to fundamentals. In

both cases, we can see in panel (b) that the policy generates an increase in asset prices, as asset

purchases raise the overall demand for capital. In line with the results above, panel (a) shows

that the share of defaulting banks falls monotonically with the level of asset purchases in the

economy with runs, whereas in the case with only fundamental defaults, the share of defaulting

banks remains almost the same.

In addition, panel (c) shows the different implications of credit easing for welfare, depending on

whether defaults are due to runs or fundamentals. The simulations show that welfare is maximized

for strictly positive asset purchases in the economy with runs, whereas welfare is decreasing

in asset purchases in the economy without runs. As highlighted in equation (22), the reduction

in the share of defaulting banks has a first-order positive welfare effect in the economy with

runs. The overall effect depends in general on the balance between this effect and the losses from

intervention, in addition to the other general equilibrium effects and the changes on 𝛾 ′𝑠 . In the

parametrization considered, we obtain that the gains from reducing the share of defaulting banks

in the presence of runs outweigh the government losses.
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(a) Share of Defaulting Banks

(b) Asset Price 𝑝0 (c) Banks’ Welfare Gains

Figure 4: Credit Easing Policies

Notes: The simulation was generated using 𝑅 = 1.06, 𝛽 = 0.8/𝑅, 𝑧𝐷 = 𝛽/(1−𝛽), 𝑧 = 1.02𝑧𝐷 , 𝐾 = 1, 𝐵0 = 0.092,

𝑧𝑔 = 1

5
𝑧𝐷 , and a uniform distribution for 𝑧0 between [0.98𝑧, 1.02𝑧].

5 Discussion

In this section, we take stock on the main policy implications of our analysis and discuss several

extensions of our baseline model.

5.1 Policy remarks

A distinctive implication of our model is that the desirability of credit easing depends on whether

a crisis is driven by fundamentals or self-fulfilling runs.

Our result that credit easing may backfire in the case of fundamentals-driven crisis contrasts

with much of the literature on unconventional policies, which attributes a stabilizing role to asset
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purchases during financial crises (e.g. Gertler and Karadi, 2011). A key feature that explains our

results is that we allow for the possibility of endogenous default. Thus, as repaying banks are net

buyers of assets, an increase in asset prices from credit easing depresses their value, pushing more

banks into default.

On the other hand, we show that credit easing may be desirable during runs. The key difference

with a fundamentals-driven crisis is that repaying banks facing a run are net sellers of assets and

thus benefit from increases in asset prices. As a result, more banks become less vulnerable to runs

because even if investors were to run, the bank would still be able to continue operations. Because

defaults driven by runs are inefficient, credit easing generates a strictly positive effect on banks’

welfare, while also preserving the value of creditors’ bonds and raising their welfare.

Putting these findings together suggests that in a financial crisis, the policy response of using

asset purchases may not necessarily be desirable. While it may indeed be difficult for policymakers

to infer whether a crisis is driven by fundamentals or by self-fulfilling beliefs, a key takeaway is

that the effectiveness of credit easing cannot be taken for granted in general and may depend on

the source of the crisis.

Let us highlight also that for credit easing to be effective during a self-fulfilling runs, the gov-

ernment must hold assets. This policy implication contrasts with models in which an intervention

occurs off the equilibrium path, such as that of Bocola and Dovis (2019).

5.2 Extensions

The model we presented can be extended in several directions. Below, we discuss a few of such

extensions.

Sunspots. In our baseline general equilibrium definition, we consider a scenario in which the

equilibrium is characterized by a default threshold, denoted by 𝑧, causing all banks with 𝑧0 < 𝑧 to

default at time 𝑡 = 0. We studied the cases for 𝑧 ∈ {𝑧𝐹 , 𝑧𝑅𝑢𝑛}, meaning the threshold could only take

one of two specific values (part (v) of Definition 2). This restriction was helpful for highlighting

the differences between the case with runs and the case with only fundamental defaults. However,

the restriction is arbitrary. For instance, any value 𝑧 ∈ (𝑧𝐹 , 𝑧𝑅𝑢𝑛) could have also been used to

define a general equilibrium with a default threshold. We could have also introduced uncertainty.

For example, in the sovereign debt literature, it is common to assume the existence of a sunspot

variable, whose realization determines whether a run occurs or not, as in the work of Cole and

Kehoe (2000).

Incorporating these alternative selection criteria into our model is not too complicated. To

illustrate this, let’s consider a scenario in which at the beginning of period 𝑡 = 0, each bank

is assigned an idiosyncratic random variable, denoted by 𝜋 𝑖 , which is drawn from a uniform
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distribution on the interval [0, 1]. We define equilibria based on a threshold value, denoted by

𝜋 , such that any bank with a realization 𝜋 𝑖 < 𝜋 and with a productivity draw 𝑧0 ∈ [𝑧𝐹 , 𝑧𝑅𝑢𝑛)
defaults because of a run. Given this, the only condition that needs to be changed in the general

equilibrium definition is the net worth definitions (15) and (16). Specifically, we now have

𝑁0 =

∫ 𝑧

𝑧𝑅𝑢𝑛
((𝑧0 + 𝑝0)𝐾 − 𝑅𝐵0)𝑑𝐹 (𝑧0) + (1 − 𝜋)

∫ 𝑧𝑅𝑢𝑛

𝑧𝐹
((𝑧0 + 𝑝0)𝐾 − 𝑅𝐵0)𝑑𝐹 (𝑧0)

𝑁𝐷
0
=

[
𝐹 (𝑧𝐹 ) + (𝐹 (𝑧𝑅𝑢𝑛) − 𝐹 (𝑧𝐹 ))𝜋

]
(𝑧𝐷 + 𝑝0)𝐾.

The equilibrium definition in Definition 2 remains otherwise unchanged, except for requirement,

(v) which needs to be modified to allow for a fraction 𝜋 banks to default if 𝑧 ∈ (𝑧𝐹 , 𝑧𝑅𝑢𝑛). The cases

𝜋 = 0 and 𝜋 = 1 represent our two baseline cases without runs and with runs, respectively.

The policy analysis with sunspots is not too different from our baseline model. Note, however,

that now one would need to take simultaneously into account the effects of the policy on both

thresholds, 𝑧𝐹 and 𝑧𝑅𝑢𝑛 , as they both appear in the market clearing condition.

The initial debt level. Up until now, our analysis has assumed the initial debt level 𝐵0 as given.

Under the assumption that there is no uncertainty for 𝑡 ≥ 1, this implies that defaults occur

solely at 𝑡 = 0, contingent on the value of 𝐵0. In this section, we expand the model to include

a period 𝑡 = −1, during which banks make a leverage decision while considering the potential

occurrence of a default at 𝑡 = 0. This allows us to determine the initial debt level by incorporating

the dynamics of banks’ actions and expectations in pricing the bond.

A bank in period 𝑡 = −1 starts the period with some initial net worth, 𝑛−1. The bank then

chooses a level of capital for the following period, 𝑘0, as well as a leverage choice 𝑙0 ≡ 𝑏0/(𝑝0𝑘0).
The creditors anticipate the default probability in period 𝑡 = 0, and thus the bond price in period

𝑡 = −1 is

𝑞−1(𝑙0) = 1 − 𝐹 (𝑧 (𝑙0)),

where 𝑧 (𝑙0) is given by (10) in case of fundamental defaults and by (11) in case of runs, and where

we have made the dependence of the threshold on leverage explicit, as it is now a bank choice

at 𝑡 = −1. In period 𝑡 = −1, the bank realizes that its own leverage choices affect the price of its
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bonds. The bank repayment problem at 𝑡 = −1 is then

𝑉 𝑅−1
(𝑛−1) = max

𝑐−1≥0,𝑙0,𝑘0

log(𝑐−1) + 𝛽
[∫ ∞

𝑧 (𝑙0)
𝑉 𝑅

0
((𝑧0 + 𝑝0 − 𝑅𝑙0𝑝0)𝑘0) 𝑓 (𝑧0)𝑑𝑧0 + 𝐹 (𝑧 (𝑙0))𝑉 𝐷

0
((𝑧𝐷 + 𝑝0)𝑘0)

]
subject to

𝑐−1 = 𝑛−1 + (1 − 𝐹 (𝑧 (𝑙0)))𝑝0𝑘0𝑙0 − 𝑝−1𝑘0,

The log utility continues to imply that consumption at 𝑡 = −1 remains a fraction (1 − 𝛽) of

the bank’s net worth. Let 𝑢′−1
≡ 1/𝑐−1 and E𝑢′

0
≡

∫ ∞
𝑧 (𝑙0)

1

𝑐0

𝑑𝐹 (𝑧0)
1−𝐹 (𝑧0) . These correspond to the marginal

utility out of a unit of consumption in period 𝑡 = −1 and the expected marginal utility in period

𝑡 = 0 conditional on repayment.

In the case in which 𝑧 = 𝑧𝐹 , assuming 𝑧𝐹 is interior, the first-order condition for leverage is

1

E𝑢′
0

− 𝛽𝑅

𝑢′−1

=
1

E𝑢′
0

𝑓 (𝑧𝐹 )
1 − 𝐹 (𝑧𝐹 )

𝜕𝑧𝐹

𝜕𝑙0
𝑙0, (31)

This simple formula has antecedents in the sovereign debt literature and provides a clear intuition

for the optimal leverage choice.
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If there was no default risk in period 𝑡 = 0, the right-hand

side would be zero, and the optimal policy would equalize marginal utility in period 𝑡 = −1 to

𝛽𝑅 times the expected marginal utility in period 𝑡 = 0, as usual. When there is default risk (and

leverage is positive), the right-hand side reflects a positive wedge between the marginal utility

in the initial period 𝑡 = −1 and the expected marginal utility (conditional on repayment) in the

second period 𝑡 = 0, introducing an incentive for banks to reduce leverage. The left-hand side

captures the balance of resources required to maintain a constant level of utility for the bank.

When 𝛽𝑅 < 1, the bank is impatient relative to the creditors, and this is a force for additional

leverage. Even though prices in equilibrium are actuarially fair, default is costly in the model. The

right-hand side reflects the resources lost at the margin because of default risk, and it is a force for

reducing leverage. The optimal choice of leverage balances these two forces, and which of these

two dominates is a matter of quantitative analysis.

An additional term appears in the case of 𝑧 = 𝑧𝑅𝑢𝑛. Again, assuming that the threshold is

interior, we have that the first-order condition for leverage is now

1

E𝑢′
0

− 𝛽𝑅

𝑢′−1

=
1

E𝑢′
0

𝑓 (𝑧𝑅𝑢𝑛)
1 − 𝐹 (𝑧𝑅𝑢𝑛)

𝜕𝑧𝑅𝑢𝑛

𝜕𝑙0

[
𝑙0 +

𝛽

𝑝0𝑘0𝑢
′
−1

(𝑉 𝑅 −𝑉 𝐷)
]
, 𝑜 𝑓

where 𝑉 𝑅 and 𝑉 𝐷
are the 𝑡 = 0 values of repayment and default at the run threshold.

Note the novel second term in the square brackets , a change from (31). We can use the

36
See, for example, equation (16) in Aguiar, Amador, Hopenhayn and Werning (2019).
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threshold definition, as well as the shape of the value functions to obtain:

𝑉 𝑅 −𝑉 𝐷 =
𝛽

1 − 𝛽 log

(
𝑅𝑒

1

𝑅𝑘
1

)
That is, the difference between the value of repaying and defaulting at the run threshold is driven

by the difference between the rate of return on equity, 𝑅𝑒
1
, and the (unlevered) rate of return to

capital, 𝑅𝑘
1
, reflecting how during a run, the bank loses the ability to leverage.

The inequality 𝑉 𝑅 − 𝑉 𝐷 > 0 holds whenever 𝑅𝑒
1
> 𝑅𝑘

1
, providing an additional factor that

reduces leverage. When runs can occur, a bank in the model exercises additional caution regarding

its borrowing levels. This is because a higher debt level increases the probability of a run, which

generates a discrete drop in the bank’s payoff (as the bank is no longer indifferent between

defaulting and repaying when facing a run). This additional motive for deleveraging disappears in

the case of fundamental defaults, where 𝑉 𝑅 = 𝑉 𝐷
at the threshold.

The default outside option. A key ingredient in the model is the endogeneity of bank’s decision

to default. Specifically, a bank compares the value of repaying against its outside option, which is

the value of default. Moreover, we assumed that a bank that defaults can continue operating the

capital (at a lower productivity) and trading it with other banks, and is excluded from the bond

market. This assumption implies that the value of default for a bank is affected by equilibrium

prices, and thus by the credit easing policy. In particular, since the defaulting bank is a net seller

of capital, it benefits from the increase in asset prices resulting from credit easing.

In this section, we provide an alternative specification for the default costs that does not have

this feature and show how the results carry over to this environment. To keep the analysis simple,

let us assume now that repaying banks always have constant productivity; that is, 𝑧𝑡 = 𝑧 for all 𝑡 ,

including 𝑡 = 0. We assume that once a bank defaults, it cannot longer borrow or save and cannot

trade in the capital market. We also assume that the defaulting bank keeps a fraction of its capital

while the remaining is lost. The outside option of default is then

𝑉 𝐷
𝑡 (𝑘𝑡 ) = 𝑣𝐷𝑡 + 1

1 − 𝛽 log(𝑘𝑡 ).

where 𝑣𝐷𝑡 encapsulates the fraction of capital kept after default as well as the productivity during

default. We treat 𝑣𝐷𝑡 as exogenous and unaffected by prices. In particular, for all periods 𝑡 ≥ 1,

𝑣𝐷𝑡 = 𝑣𝐷 . And for period 𝑡 = 0, 𝑣𝐷
0

is drawn from some cdf with support in [𝑣, 𝑣]. The key difference

with our baseline model is that defaulting banks are no longer affected by equilibrium prices, as

𝑣𝐷𝑡 is exogenous.

Note that with this specification of the outside option for default, the linearity that we exploited
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in the baseline is maintained. In particular, banks are subject to a linear borrowing constraint,

with the difference that {𝛾𝑡 } reflects the different outside option.

Suppose that 𝑅𝑘
1
> 𝑅. Then, the demand for capital for a repaying bank in period 𝑡 = 0 is

𝑘𝑅
1
=

𝛽𝑛0

𝑝0 − 𝛾0𝑝1

.

and the demand for capital for a bank that repays subject to a run is

𝑘𝑅𝑢𝑛
1

=
𝛽𝑛0

𝑝0

,

where 𝑛0 = (𝑧 + 𝑝0)𝐾 − 𝑅𝐵0. Note that as long as there is borrowing, that is, 𝛾0 > 0, we have that

𝑘𝑅𝑢𝑛
1

< 𝑘𝑅
1

: banks that are subject to a run demand less capital than those that repay.

General equilibrium requires market clearing in the capital market at 𝑡 = 0. Given that

defaulting banks keep their capital, this means that 𝑘𝑅
1
=𝐾. That is, repaying banks are neither net

sellers nor net buyers. The above then implies that banks facing a run are necessarily net sellers

of capital.

Consider now a marginal increase in 𝑝0 (which could be generated by a credit easing policy).

This increase has no first-order effect on the value of a repaying bank that does not face a run, as

this bank is neither a net seller nor a net buyer. In the presence of losses from the credit easing

policy, one would expect that the value of a repaying bank decreases with the policy, therefore

increasing the share of defaulting banks in an economy without runs.

In the case of a run, however, an increase in 𝑝0 has a first-order positive effect on the value of a

bank that decides to repay subject to a run, as this bank is a net seller. In this case, we would expect

that a credit easing policy that raises 𝑝0 reduces the share of defaulting banks in an economy

where banks are subject to runs.

The analysis, therefore, suggests that our perspective on how the desirability of credit easing

depends on whether crises are triggered by fundamentals or self-fulfilling runs does not hinge on

having a default outside option for the bank that is affected by asset prices.

6 Conclusion

We developed a tractable dynamic general equilibrium model of self-fulfilling bank runs. The

model features banks that face limited commitment and optimally choose portfolios, equity, and

default. These decisions are dynamic and depend on the entire sequence of asset prices, which are

endogenously determined in equilibrium. We provide an analytical characterization of when an

individual bank defaults because of fundamentals, when it defaults because of a self-fulfilling run,
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and when it is solvent and liquid and continues to operate. We then characterize the evolution of

asset prices and the fraction of banks that default in general equilibrium.

Our analysis shows that the interplay between bank runs and general equilibrium has distinc-

tive policy implications. A policy insight is that the effectiveness of credit easing during a crisis

depends on whether the crisis is driven by fundamentals or by self-fulfilling runs. When a crisis is

triggered by fundamentals, credit easing may lead to more banks defaulting in equilibrium, as the

increase in asset prices reduces the value of repaying banks that are net buyers of the assets. When

a crisis is instead triggered by self-fulfilling runs, credit easing becomes stabilizing. Repaying

banks facing a run benefit from the increase in asset prices and therefore become less vulnerable

to a run, because they are net sellers of assets.

The results suggest several avenues for future research. A first avenue is quantitative and

requires enriching the model to provide a more complete description of the banking system. A

second avenue is to consider the anticipation effects of future credit easing policies. Finally, while

we have used the framework to explore the effects of credit-easing policies, it is possible to extend

the model to consider other types of government policies, such as monetary and macroprudential

policies.
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Online Appendix to “Bank Runs,

Fragility, and Credit Easing”

By Manuel Amador and Javier Bianchi

A Proofs

A.1 Proof of Lemma 1

Proof. The problem of a bank under default facing a sequence of prices {𝑝𝑡 }∞𝑡=0
is given by

𝑉𝐷
𝑡 (𝑘) = max

𝑘 ′,𝑐
log(𝑐) + 𝛽𝑉𝐷

𝑡+1
(𝑘 ′) (A.1)

subject to

𝑐 = (𝑝𝑡 + 𝑧𝐷 )𝑘 − 𝑝𝑡𝑘 ′.

We conjecture that

𝑉𝐷
𝑡 (𝑘) = B𝐷𝑡 + 1

1 − 𝛽 log((𝑧𝐷 + 𝑝𝑡 )𝑘) . (A.2)

Replacing this conjecture into (A.1) and substituting out consumption from the budget constraint, we have

that

𝑉𝐷
𝑡 (𝑘) = max

𝑘 ′
log(𝑧𝐷𝑘 + 𝑝𝑡 (𝑘 − 𝑘 ′)) + 𝛽

[
1

1 − 𝛽 log(𝑘 ′(𝑝𝑡+1 + 𝑧𝐷 )) + B𝐷𝑡+1

]
. (A.3)

The first-order condition with respect to 𝑘 ′ is given by

𝑝𝑡

𝑧𝐷𝑘 + 𝑝𝑡 (𝑘 − 𝑘 ′)
=

(
𝛽

1 − 𝛽

)
1

𝑘 ′

⇒ 𝑘 ′ =
𝛽 (𝑧𝐷 + 𝑝𝑡 )

𝑝𝑡
𝑘. (A.4)

By the method of undetermined coefficients, we can now verify the conjecture and solve for B𝐷𝑡 . We

substitute (A.4) into the right-hand side of (A.3) and replace the conjectured guess for 𝑉𝐷
𝑡 (𝑘) on the

left-hand side of (A.3):

B𝐷𝑡 + 1

1 − 𝛽 log((𝑧𝐷 + 𝑝𝑡 )𝑘) = log

(
(1 − 𝛽) (𝑧𝐷 + 𝑝𝑡 )𝑘

)
+ 𝛽

[
1

1 − 𝛽 log

(
𝛽𝑅𝐷𝑡+1

(𝑧𝐷 + 𝑝𝑡 )𝑘
)
+ B𝐷𝑡+1

]
.

where we have used the definition of 𝑅𝐷𝑡+1
. Rearranging this equation, we can observe that the terms

multiplying log(𝑘) cancel out. After simplifying, we obtain that the conjectured value function is verified

when B𝐷𝑡 satisfies

B𝐷𝑡 = log(1 − 𝛽) + 𝛽

1 − 𝛽 log(𝛽) + 𝛽

1 − 𝛽 log

(
𝑅𝐷𝑡+1

)
+ 𝛽B𝐷𝑡+1

. (A.5)
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Iterating forward on this equation and imposing lim𝜏→∞ 𝛽𝜏 log

(
𝑅𝐷𝜏+1

)
= 0, as in Condition 1, we have

B𝐷𝑡 =
1

1 − 𝛽

[
𝛽

1 − 𝛽 log(𝛽) + log(1 − 𝛽)
]
+ 𝛽

1 − 𝛽
∑︁
𝜏≥𝑡

𝛽𝜏−𝑡 log

(
𝑅𝐷𝜏+1

)
. (A.6)

Replacing (A.6) in (A.2), we obtain that the value under default is given by

𝑉𝐷
𝑡 (𝑘) = 𝐴 + 1

1 − 𝛽 log((𝑧𝐷 + 𝑝𝑡 )𝑘) +
𝛽

1 − 𝛽
∑︁
𝜏≥𝑡

𝛽𝜏−𝑡 log

(
𝑅𝐷𝜏+1

)
,

where

𝐴 =
log(1 − 𝛽) + 𝛽

1−𝛽 log(𝛽)
1 − 𝛽 .

We thus arrived at equation (2), as stated in the lemma. □

A.2 Proof of Lemma 2

We conjecture that the value function is

𝑉 𝑅
𝑡 (𝑛) = 1

1 − 𝛽 log(𝑛) + B𝑅𝑡 . (A.7)

The borrowing constraint must be such that the bank does not default at 𝑡 + 1. That is,

B𝑅𝑡+1
+ 1

1 − 𝛽 log(𝑛′) ≥ B𝐷𝑡+1
+ 1

1 − 𝛽 log((𝑧𝐷 + 𝑝𝑡+1)𝑘 ′).

Replacing 𝑛′ for the law of motion and manipulating this expression, we arrive at

𝑏′ ≤

[
(𝑧 + 𝑝𝑡+1) − (𝑧𝐷 + 𝑝𝑡+1)𝑒 (1−𝛽 ) (B

𝐷
𝑡+1

−B𝑅
𝑡+1

)
]

𝑅
𝑘 ′.

Therefore, the borrowing constraint takes a linear form, as conjectured. In particular,

𝑏′ ≤ 𝛾𝑡𝑝𝑡+1𝑘
′,

where 𝛾𝑡 is the leverage parameter and is given by

𝛾𝑡 =
(𝑧 + 𝑝𝑡+1) − (𝑧𝐷 + 𝑝𝑡+1)𝑒 (1−𝛽 ) (B

𝐷
𝑡+1

−B𝑅
𝑡+1

)

𝑅𝑝𝑡+1

. (A.8)

We establish now that if 𝑅𝑘𝑡+1
> 𝑅, the borrowing constraint binds at time 𝑡 .

Lemma A.1. If 𝑅𝑘𝑡+1
> 𝑅, then the bank is against the borrowing constraint.

Proof. The proof is by contradiction. Denote by (𝑐∗𝑡 , 𝑘∗𝑡+1
, 𝑏∗𝑡+1

) the solution to the bank problem with 𝑏∗𝑡+1
<

𝛾𝑡𝑝𝑡+1𝑘
∗
𝑡+1
. Consider the following alternative policy: (𝑐∗𝑡 , ˜𝑘𝑡+1 + Δ, ˜𝑏𝑡+1 + Δ𝑝𝑡 ), with 0 < Δ <

𝛾𝑡𝑝𝑡+1
˜𝑘𝑡+1− ˜𝑏𝑡+1

𝑝𝑡−𝛾𝑡𝑝𝑡+1

.
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The alternative allocation is feasible and delivers higher net worth, since

𝑛̃𝑡+1 = ( ˜𝑘𝑡+1 + Δ) (𝑧 + 𝑝𝑡+1) − 𝑅 ˜𝑏𝑡+1 + Δ𝑝𝑡 )
= ˜𝑘𝑡+1(𝑧 + 𝑝𝑡+1) − 𝑅 ˜𝑏𝑡+1) + Δ(𝑅𝑘𝑡+1

− 𝑅)
> ˜𝑘𝑡+1(𝑧 + 𝑝𝑡+1) − 𝑅 ˜𝑏𝑡+1 = 𝑛

∗
𝑡+1
,

where 𝑛̃𝑡+1 and 𝑛∗𝑡+1
are respectively the net worth under the alternative and original allocations.

Since the alternative allocation delivers the same consumption and higher net worth, this contradicts

that the original allocation with a slack borrowing constraint is optimal. □

We now proceed to finish the proof of Lemma 2.

Proof. Consider first the case with 𝑅𝑘𝑡+1
> 𝑅. From Lemma A.1, we know that borrowing constraint binds,

and hence we can use 𝑏′ = 𝛾𝑡𝑝𝑡+1𝑘
′
. Replacing this in the law of motion for net worth and consumption,

we obtain

𝑛′ = 𝑘 ′(𝑧 + 𝑝𝑡+1) − 𝛾𝑡𝑝𝑡+1𝑘
′𝑅

and

𝑐 = 𝑛 − 𝑘 ′(𝑝𝑡 − 𝛾𝑡𝑝𝑡+1) .

Replacing these two expressions and the conjectured value function (A.7) in the right-hand side of (4), we

have

𝑉 𝑅
𝑡 (𝑛) = max

𝑘 ′
log(𝑛 − 𝑘 ′(𝑝𝑡 − 𝛾𝑡𝑝𝑡+1)) + 𝛽

[
1

1 − 𝛽 log(𝑘 ′(𝑧 + 𝑝𝑡+1(1 − 𝛾𝑡𝑅)) + B𝑅𝑡+1

]
, (A.9)

The first-order condition with respect to 𝑘 ′ is

𝑝𝑡 − 𝛾𝑡𝑝𝑡+1

𝑛 − 𝑘 ′(𝑝𝑡 − 𝛾𝑡𝑝𝑡+1)
=

(
𝛽

1 − 𝛽

)
1

𝑘 ′

and yields

𝑘 ′ =
𝛽𝑛

𝑝𝑡 − 𝛾𝑝𝑡+1

, (A.10)

𝑐 = (1 − 𝛽)𝑛, (A.11)

and

𝑛′ =
𝛽𝑛

𝑝𝑡 − 𝛾𝑡𝑝𝑡+1

(𝑧 + 𝑝𝑡+1(1 − 𝛾𝑡𝑅)) .

Notice that by definition of 𝑅𝑒𝑡+1
, we have that

𝑅𝑒𝑡+1
=
𝑧 + 𝑝𝑡+1(1 − 𝛾𝑡𝑅)
𝑝𝑡 − 𝛾𝑡𝑝𝑡+1

. (A.12)
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If we use (A.10) and (A.12) and replace (A.7), on the left-hand side of (A.9)

B𝑅𝑡 + 1

1 − 𝛽 log(𝑛) = log ((1 − 𝛽)𝑛) + 𝛽
[

1

1 − 𝛽 log(𝛽𝑅𝑒𝑡+1
𝑛) + B𝑅𝑡+1

]
.

Rearranging this equation, we can observe that the log(𝑛) terms cancel out. We therefore obtain that the

conjecture is verified when the B𝑅𝑡 satisfies

B𝑅𝑡 =
𝛽

1 − 𝛽 log(𝛽) + log(1 − 𝛽) + 𝛽

1 − 𝛽 log(𝑅𝑒𝑡+1
) + 𝛽B𝑅𝑡+1

. (A.13)

Iterating forward and imposing lim𝑡→∞ 𝛽𝑡B𝑅𝑡 = 0, we have

B𝑅𝑡 =
1

1 − 𝛽

[
𝛽

1 − 𝛽 log(𝛽) + log(1 − 𝛽)
]
+ 𝛽

1 − 𝛽
∑︁
𝜏≥𝑡

𝛽𝜏−𝑡 log

(
𝑅𝑒𝜏+1

)
, (A.14)

so the value under repayment is given by

𝑉 𝑅
𝑡 (𝑛) = 1

1 − 𝛽 log(𝑛) + B𝑅𝑡 ,

where B𝑅𝑡 is given by (A.14). Equivalently, using the definitions of 𝑅𝑒 and 𝐴, we arrive at

𝑉 𝑅
𝑡 (𝑛) = 𝐴 + 1

1 − 𝛽 log(𝑛) + 𝛽

1 − 𝛽

∞∑︁
𝜏≥𝑡

𝛽𝜏−𝑡 log(𝑅𝑒𝜏+1
),

which is the expression (8).

Notice also from (A.10) and (A.11) and the fact that 𝑏′ = 𝛾𝑡𝑝𝑡+1𝑘
′

that we have also verified the policies

in item (ii) of the lemma for the case of 𝑅𝑘𝑡+1
> 𝑅.

Finally, it is straightforward to verify that in the case of 𝑅𝑘𝑡+1
= 𝑅, the conjectured value function (A.7)

solves the Bellman equation, and the bank is now indifferent across 𝑏′, 𝑘 ′, while consumption remains

given by (A.11). This completes the proofs of the three items in the lemma. □

A.3 Proof of Proposition 1

Proof. Rearranging (A.8), we obtain

𝛽

1 − 𝛽 log

(
𝑧 + 𝑝𝑡+1(1 − 𝛾𝑡𝑅)

𝑧𝐷 + 𝑝𝑡+1

)
= 𝛽 (B𝐷𝑡+1

− B𝑅𝑡+1
). (A.15)

To obtain an expression for the right-hand side of (A.15), we use (A.5) and (A.13), and obtain the result

that the difference in the intercepts in the value functions is given by

B𝐷𝑡 − B𝑅𝑡 = 𝛽 (B𝐷𝑡+1
− B𝑅𝑡+1

) + 𝛽

1 − 𝛽
[
log(𝑅𝐷𝑡+1

) − log(𝑅𝑒𝑡+1
)
]
), (A.16)

Using the definition of 𝑅𝐷𝑡+1
and 𝑅𝑒𝑡+1

and replacing (A.15), we get that

B𝐷𝑡 − B𝑅𝑡 = 𝛽 (B𝐷𝑡+1
− B𝑅𝑡+1

) − 𝛽

1 − 𝛽

[
log

(
𝑧 + 𝑝𝑡+1(1 − 𝛾𝑡𝑅)
𝑝𝑡 − 𝛾𝑡𝑝𝑡+1

)
− log

(
𝑧𝐷 + 𝑝𝑡+1

𝑝𝑡

)]
.
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Using that using that log(𝑝𝑡 − 𝛾𝑡𝑝𝑡+1) = log

(
1 − 𝛾𝑡 𝑝𝑡+1

𝑝𝑡

)
+ log(𝑝𝑡 ) and simplifying, we get that

B𝐷𝑡 − B𝑅𝑡 = 𝛽 (B𝐷𝑡+1
− B𝑅𝑡+1

)−
𝛽

1 − 𝛽

[
log (𝑧 + 𝑝𝑡+1(1 − 𝛾𝑡𝑅)) − log

(
1 − 𝛾𝑡

𝑝𝑡+1

𝑝𝑡

)
+ log(𝑝𝑡 ) − log

(
𝑧𝐷 + 𝑝𝑡+1

𝑝𝑡

)]
.

Replacing (A.15) and simplifying, we arrive at

B𝐷𝑡 − B𝑅𝑡 =
𝛽

1 − 𝛽

[
log

(
1 − 𝛾𝑡

𝑝𝑡+1

𝑝𝑡

)]
. (A.17)

If we update (A.17) one period forward and replace in (A.15):

log

(
𝑧 + 𝑝𝑡+1(1 − 𝛾𝑡𝑅)

𝑧𝐷 + 𝑝𝑡+1

)
= 𝛽 log

(
1 − 𝛾𝑡+1

𝑝𝑡+2

𝑝𝑡+1

)
Simplifying, we arrive at

𝑧 + 𝑝𝑡+1(1 − 𝛾𝑡𝑅)
𝑧𝐷 + 𝑝𝑡+1

=

(
1 − 𝛾𝑡+1

𝑝𝑡+2

𝑝𝑡+1

)𝛽
,

which is the expression in the proposition. □

A.4 Proof of Lemma 4

Proof. The capital demand of a repaying bank with productivity 𝑧0 can be written as

𝑘𝑅
1
(𝑧0) = 𝛽

(𝑧0 + 𝑝0)𝐾 − 𝑅𝐵0

𝑝0 − 𝛾0𝑝1

= 𝛽

(
(𝑧0 + 𝛾0𝑝1)𝐾 − 𝑅𝐵0

𝑝0 − 𝛾0𝑝1

+𝐾
)
.

The complication is that the price 𝑝0 affects the denominator of this last expression, but we do not yet know

the sign of the numerator. We know from before that 𝑘𝑅
1
(𝑧𝐹 ) ≥ 𝑘𝐷

1
. We also have that 𝑘𝑅

1
(𝑧𝑅𝑢𝑛) ≥ 𝑘𝐷

1
, as

𝑧𝑅𝑢𝑛 ≥ 𝑧𝐹 . So, independently of the default threshold, 𝑧, we have∫ 𝑧

𝑧

(𝑘𝑅
1
(𝑧0) − 𝑘𝐷1 )𝑑𝐹 (𝑧0) > 0,

where the inequality follows as the demand for capital is strictly increasing in 𝑧0, and the threshold is

interior. Market clearing at 𝑡 = 0 requires that∫ 𝑧

𝑧

𝑘𝑅
1
(𝑧0)𝑑𝐹 (𝑧0) + 𝑘𝐷1 𝐹 (𝑧) =𝐾.

Subtracting the previous inequality, we have that∫ 𝑧

𝑧

𝑘𝑅
1
(𝑧0)𝑑𝐹 (𝑧0) + 𝑘𝐷1 𝐹 (𝑧) −

∫ 𝑧

𝑧

(𝑘𝑅
1
(𝑧0) − 𝑘𝐷1 )𝑑𝐹 (𝑧0) <𝐾.
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And thus, 𝑘𝐷
1
<𝐾. It follows then that

∫ 𝑧

𝑧
(𝑘𝑅

1
(𝑧0) −𝐾)𝑑𝐹 (𝑧0) > 0. The capital demand inequality implies∫ 𝑧

𝑧

(
𝛽
(𝑧0 + 𝑝0)𝐾 − 𝑅𝐵0

𝑝0 − 𝛾0𝑝1

−𝐾
)
𝑑𝐹 (𝑧0) > 0

⇒ 𝛽

∫ 𝑧

𝑧

(
(𝑧0 + 𝛾0𝑝1)𝐾 − 𝑅𝐵0

𝑝0 − 𝛾0𝑝1

)
𝑑𝐹 (𝑧0) > (1 − 𝛽)𝐾(1 − 𝐹 (𝑧)) > 0,

which delivers ∫ 𝑧

𝑧

((𝑧0 + 𝛾0𝑝1)𝐾 − 𝑅𝐵0)𝑑𝐹 (𝑧0) > 0,

as 𝑝0 > 𝛾0𝑝1, an equilibrium requirement. We can then rewrite the capital demand of repaying banks as:∫ 𝑧

𝑧

𝑘𝑅
1
(𝑧0)𝑑𝐹 (𝑧0) = 𝛽

[ ∫ 𝑧

𝑧
((𝑧0 + 𝛾0𝑝1)𝐾 − 𝑅𝐵0)𝑑𝐹 (𝑧0)

𝑝0 − 𝛾0𝑝1

+𝐾(1 − 𝐹 (𝑧))
]
.

Given what we have just shown, the numerator of the first term inside the square brackets is strictly positive,

and thus it follows that an increase in 𝑝0 strictly reduces demand from inframarginal repaying banks. □
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