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This appendix collects the proofs of Lemmas 1 through 4.

A Proof of Lemmas 1 - 4

In Proposition 1 of Amador and Bagwell (2013), conditions (c1), (c2), (c2′), (c3), and (c3′)

all must hold for some specified γL < γH in Γ in order for the (non-degenerate) interval

allocation with bounds γL, γH to be optimal. Condition (c1) will be implied by our condition

(Gc1). Let us restate the other conditions:

(c2) If γH < γ,

(γ − γH)κ ≥

∫ γ

γ

wπ(γ̃, πf (γH))
f(γ̃)

1− F (γ)
dγ̃, ∀γ ∈ [γH , γ]

with equality at γH.

(c2′) If γH = γ, wπ(γ, πf(γ)) ≥ 0.

(c3) If γL > γ,

(γ − γL)κ ≤

∫ γ

γ

wπ(γ̃, πf (γL))
f(γ̃)

F (γ)
dγ̃, ∀γ ∈ [γ, γL]

with equality at γL.

(c3′) If γL = γ, wπ(γ, πf(γ)) ≤ 0.
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Now we proceed with new definitions. First, in the case that γ̂ 6∈ Γ, extend πf from the

domain Γ to the domain Γ∪{γ̂} by letting πf (γ̂) = π∗. Recall the discussion after Equation

(5), that γ = −b′(πf(γ)) for all γ ∈ Γ ∪ {γ̂} and that πf (γ̂) = π∗ by construction when

γ̂ ∈ Γ. It is the case that πf is strictly increasing over this extended domain, and so the sign

of γ − γ̂ is the same as the sign of πf (γ)− πf (γ̂).

Next, define the functions G : Γ→ R and H : Γ→ R as follows.

G(γ) ≡

∫ γ

γ

wπ(γ̃, πf(γ))f(γ̃)dγ̃ (12)

H(γ) ≡

∫ γ

γ

wπ(γ̃, πf(γ))f(γ̃)dγ̃, (13)

The following lemma summarizes some properties of G and H , which will be useful for later

reference.

Lemma 5. Let w be of the form (6), let κ = A, and suppose that (Gc1) holds. Then the

functions G and H are continuous, with

(a) (i) G(γ) = 0, and (ii) H(γ) = 0.

(b) (i) G′(γ) = −wπ(γ, πf(γ))f(γ), and (ii) H ′(γ) = wπ(γ, πf(γ))f(γ).
1

(c) H(γ) +G(γ) has the same sign as π∗ − πf (γ).

(d) (i) G(γ) has the same sign as π∗−πf (γ), and (ii) H(γ) has the same sign as π∗−πf (γ).

(e) (i) G is weakly convex, and (ii) H is weakly concave.

(f) For any γ ∈ Γ and γ0 ∈ Γ ∪ {γ̂} ,

G(γ) =

∫ γ

γ

wπ(γ̃, πf (γ0))f(γ̃)dγ̃ − (γ − γ0)κ(1− F (γ)) (14)

H(γ) =

∫ γ

γ

wπ(γ̃, πf (γ0))f(γ̃)dγ̃ − (γ − γ0)κF (γ). (15)

Proof of Lemma 5. Continuity as well as parts (a) and (b) are straightforward.

To show parts (c) and (d), note that strict concavity of w in its second term implies that
∫ γ

γ
wπ(γ̃, π)f(γ̃)dγ̃ is strictly decreasing in π. The action π∗ satisfies the first-order condition

(4), that
∫ γ

γ
wπ(γ̃, π∗)f(γ̃)dγ̃ = 0. Therefore,

∫ γ

γ
wπ(γ̃, π)f(γ̃)dγ̃ has the sign of π∗−π. Part

1Take G′(γ) as the left-derivative and H ′(γ) as the right-derivative at these points.
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(c) then follows from observing that H(γ)+G(γ) =
∫ γ

γ
wπ(γ̃, πf (γ))f(γ̃)dγ̃. Part (d) (i) and

(ii) are special cases of part (c), respectively applying part (a) (ii) and (i).

To show part (e), observe that for w of the form (6) it holds that

wπ(γ̃, πf(γ)) = A[b′(πf (γ)) + C(γ̃)] = A[C(γ̃)− γ], (16)

where the last equality follows from the FOC b′(πf (γ)) + γ = 0. Plugging wπ(γ̃, πf(γ)) =

A[C(γ̃)− γ] into G(γ) as defined in (12) and taking the derivative yields

G′(γ) = −A[C(γ)− γ]f(γ)−

∫ γ

γ

Af(γ̃)dγ̃

= −wπ(γ, πf (γ))f(γ)− A(1− F (γ))

= [AF (γ)− wπ(γ, πf(γ))f(γ)]−A

which is nondecreasing by (Gc1). ThereforeG is weakly convex. Similarly, plugging wπ(γ̃, πf(γ)) =

A[C(γ̃)− γ] into H(γ) as defined in (13) and taking the derivative yields

H ′(γ) = A[C(γ)− γ]f(γ)−

∫ γ

γ

Af(γ̃)dγ̃

= wπ(γ, πf(γ))f(γ)− AF (γ)

which is nonincreasing by (Gc1). Therefore H is weakly concave.

To show part (f), first note from (16) thatwπ(γ̃, πf(γ)) = A[C(γ̃)−γ] and thatwπ(γ̃, πf(γ0)) =

A[C(γ̃)−γ0] for any γ and γ0. Combining these two equations, wπ(γ̃, πf (γ)) = wπ(γ̃, πf(γ0))−

A[γ − γ0]. Substituting this identity into (12) and (13) and integrating out A[γ − γ0] yields

(14) and (15), for κ = A.

The functions G and H will essentially take the place of the “forward” and “back-

ward” biases from Alonso and Matouschek (2008). Specifically, after flipping the sign of

both functions, G generalizes the forward bias, and H generalizes the backward bias. In

Alonso and Matouschek (2008), the convexity of the backward bias, and the corresponding

concavity of the forward bias, are important for establishing optimality of interval delega-

tion. After the sign changes, that translates to the convexity of G and the concavity of H

in Lemma (5) part (e).2

Putting together parts (a), (b), (d), and (e) of Lemma 5 yields the following result:

Lemma 6. Let w be of the form (6), let κ = A, and suppose that (Gc1) holds.

2Letting πP (γ) indicate the principal’s preferred action at state γ, and taking the agent’s preferred action
πf (γ) to be linear in γ, Alonso and Matouschek (2008) define the forward bias S(γ) and backward bias T (γ)
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(i) If π∗ < πf (γ), then wπ(γ, πf (γ)) < 0.

(ii) If π∗ = πf (γ), then H(γ) < 0 for all γ > γ.

(iii) If π∗ = πf (γ), then G(γ) > 0 for all γ < γ.

(iv) If π∗ > πf (γ), then wπ(γ, πf (γ)) > 0.

Proof of Lemma 6. (i) If π∗ < πf (γ) thenG(γ) < 0 (Lemma 5 part (d)(i)); andG(γ) =

0 (Lemma 5 part (a)(i)). Therefore by convexity of G (Lemma 5 part (e)(i)), it must

be that G′(γ) > 0. Hence, by Lemma 5 part (b)(i), wπ(γ, πf(γ)) < 0.

(ii) If π∗ = πf (γ) then G(γ) = 0 (Lemma 5 part (d)(i)) and G(γ) = 0 (Lemma 5 part

(a)(i)). Therefore, by convexity of G (Lemma 5 part (e)(i)), it holds that G(γ) = 0

for all γ. The result then follows from Lemma 5 part (c).

(iii) If π∗ > πf (γ) then H(γ) > 0 (Lemma 5 part (d)(ii)); and H(γ) = 0 (Lemma 5 part

(a)(ii)). Therefore by concavity ofH (Lemma 5 part (e)(ii)), it must be thatH ′(γ) > 0.

Hence, by Lemma 5 part (b)(ii), wπ(γ, πf(γ)) > 0.

(iv) If π∗ = πf (γ) then H(γ) = 0 (Lemma 5 part (d)(ii)) and H(γ) = 0 (Lemma 5 part

(a)(ii)). Therefore, by concavity of H (Lemma 5 part (e)(ii)), it holds that H(γ) = 0

for all γ. The result then follows from Lemma 5 part (c).

We now proceed to prove Lemma 1 from the main text.

as

S(γ) ≡ (1− F (γ))πf (γ)−

∫ γ

γ

πP (γ̃)f(γ̃)dγ̃

T (γ) ≡ F (γ)πf (γ)−

∫ γ

γ

πP (γ̃)f(γ̃)dγ̃.

While Alonso and Matouschek (2008) focus on the convexity of T , linearity of πf makes that equivalent to
the concavity of S.
Under the functional form (6), we can plug (16) into (12) and (13) to get that

G(γ) =

∫ γ

γ

A(C(γ̃)− γ)f(γ̃)dγ̃ = −A

(

(1− F (γ))γ −

∫ γ

γ

C(γ̃)f(γ̃)dγ̃

)

H(γ) =

∫ γ

γ

A(C(γ̃)− γ)f(γ̃)dγ̃ = −A

(

F (γ)γ −

∫ γ

γ

C(γ̃)f(γ̃)dγ̃

)

.

As described in footnote 3 in the main text, the problem of Alonso and Matouschek (2008) can be transformed
to one with utility of the form (6) in which πf (γ) = γ, A = 1, and C(γ) = πP (γ). The above expressions
then imply that G(γ) = −S(γ) and H(γ) = −T (γ).
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Proof of Lemma 1. The optimal allocation follows as an immediate application of Propo-

sition 1 of Amador and Bagwell (2013) with γL = γ and γH = γ, noting that (c1) is implied

by (Gc1); (c2) holds vacuously; (c2′) holds by assumption; (c3) holds vacuously; and (c3′)

holds by assumption. The fact that π∗ ∈ [πf(γ), πf (γ)] follows from Lemma 6 parts (i) and

(iv).

To prove Lemmas 2 through 4, let us now write “relaxed” versions of (c2), (c3), (d2),

and (d3). The relaxed version of (c2) just confirms that the condition holds with equality

at γ = γH, rather than additionally checking weak inequality at γ > γH ; call this (Rc2).

Likewise, call (Rc3) the relaxation of (c3) to just hold with equality at γ = γL. Call (Rd2)

and (Rd3) the relaxations of (d2) and (d3) in which the relevant inequalities hold only at γ̂,

and only when γ̂ is on the interior of Γ. These new conditions can be written in terms of G

and H .

(Rc2) If γH < γ in Γ, G(γH) = 0.

(Rc3) If γL > γ in Γ, H(γL) = 0.

(Rd2) If γ̂ ∈ (γ, γ), G(γ̂) ≤ 0.

(Rd3) If γ̂ ∈ (γ, γ), H(γ̂) ≥ 0.

In fact, each of the relaxed conditions will be sufficient to imply the original conditions.

Lemma 7. Let w be of the form (6), let κ = A, and suppose that (Gc1) holds.

(i) Fixing γH < γ in Γ, (Rc2) implies (c2).

(ii) Fixing γL > γ in Γ, (Rc3) implies (c3).

(iii) (Rd2) implies (d2).

(iv) (Rd3) implies (d3).

Part (i) is a restatement of a result in Lemma 1 of Amador and Bagwell (2016). The

proof follows exactly as in that Lemma, relying on the convexity of G and its expression as

(14).3 The other parts extend similar arguments from the case of a cap at state γH to the

cases of a floor at state γL, and to floors or caps at action π∗.

3More precisely, the proof of Lemma 1 of Amador and Bagwell (2016) defines a function G(γ) directly as
the expression for G(γ) in (14), with γ0 = γH . They show that (Gc1) implies convexity of this function over
Γ, as in Lemma 5 part (e)(i) of the current paper, and that convexity implies the result.
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Proof of Lemma 7. (i) Fix γH < γ and suppose that (Rc2) holds. Applying Equation

(14) with γ0 = γH , condition (c2) is equivalent to

G(γ) ≤ 0 for γ ≥ γH in Γ, with G(γH) = 0.

It holds that G(γ) = 0, and that G(γH) = 0 under (Rc2). So (c2) follows from

convexity of G (Lemma 5 part (e)(i)).

(ii) Fix γL > γ and suppose that (Rc3) holds. Applying Equation (15) with γ0 = γL,

condition (c3) is equivalent to

H(γ) ≥ 0 for γ ≤ γL in Γ, with H(γL) = 0.

It holds that H(γ) = 0, and that H(γL) = 0 under (Rc3). So (c3) follows from

concavity of H (Lemma 5 part (e)(ii)).

(iii) If γ̂ ≥ γ, then (d2) holds vacuously. If γ̂ < γ, applying Equation (14) with γ0 = γ̂

shows that condition (d2) is equivalent to

G(γ) ≤ 0 for γ ≥ γ̂ in Γ.

It holds that G(γ) = 0. So if γ̂ ∈ (γ, γ), then by convexity of G, (d2) is implied by

G(γ̂) ≤ 0, which is the condition (Rd2). On the other hand, if γ̂ ≤ γ (i.e., π∗ ≤ πf (γ)),

then by convexity of G, (d2) is implied by G(γ) ≤ 0; and G(γ) ≤ 0 holds by Lemma 5

part (d)(i).

(iv) If γ̂ ≤ γ, then (d3) holds vacuously. If γ̂ > γ, applying Equation (15) with γ0 = γ̂,

condition (d3) is equivalent to

H(γ) ≥ 0 for γ ≤ γ̂ in Γ.

It holds that H(γ) = 0. So if γ̂ ∈ (γ, γ), then by concavity of H , (d3) is implied by

H(γ̂) ≥ 0, which is the condition (Rd3). On the other hand, if γ̂ ≥ γ (i.e., π∗ ≥ πf (γ)),

then by concavity of H , (d3) is implied by H(γ) ≥ 0; and H(γ) ≥ 0 by Lemma 5 part

(d)(ii).

The proofs of Lemmas 2 - 4 apply Lemma 7 in order to show existence of caps or floors

satisfying the relevant conditions out of (c2), (c2′) (c3), (c3′), (d2), or (d3). Lemma 7 tells us
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that we need only check the relaxed conditions. That is, we need only confirm equalities or

inequalities at single points rather than over an entire interval. This observation allows us to

use arguments from continuity – i.e., the intermediate value theorem – to find the existence

of such points.

Proof of Lemma 2. It holds that G(γ) = 0, and by (12) there exists γ arbitrarily close

to γ such that G(γ) < 0.4 Lemma 6 part (iii) therefore rules out π∗ = πf (γ). Moreover,

Lemma 6 part (iv) rules out π∗ > πf (γ). So there are two possible cases:

(i) π∗ ∈ (πf (γ), πf(γ)).

(ii) π∗ ≤ πf (γ), i.e., γ̂ ≤ γ.

In case (i), first observe that H(γ) ≤ 0 for all γ; this follows from H(γ) = 0 (Lemma 5

part (a)(ii)), H ′(γ) ≤ 0 (Lemma 5 part (b)(ii)), and H concave (Lemma 5 part (e)(ii)). In

particular, H(γ̂) ≤ 0. So by Lemma 5 part (c), it must hold that G(γ̂) ≥ 0. Therefore,

continuity of G implies that there exists γH ∈ [γ̂, γ) such that G(γH) = 0, i.e., such that

(Rc2) holds. Now apply Proposition 1 of Amador and Bagwell (2013) to get that the interval

allocation with bounds γ, γH is optimal: (c1) is implied by (Gc1), (c2) by (Rc2) and Lemma

7 part (i), (c2′) vacuously, (c3) vacuously, (c3′) by assumption.

In case (ii), (Rd2) and (Rd3) hold vacuously, and therefore (d2) and (d3) hold by Lemma

7. Now apply Proposition 1 of the current paper to get that the constant allocation π∗ is

optimal.

Proof of Lemma 3. It holds that H(γ) = 0, and by (13) there exists γ arbitrarily close

to γ such that H(γ) > 0.5 Lemma 6 part (ii) therefore rules out π∗ = πf(γ). Moreover,

Lemma 6 part (i) rules out π∗ < πf (γ). So there are two possible cases:

(i) π∗ ∈ (πf (γ), πf(γ)).

(ii) π∗ ≥ πf (γ), i.e., γ̂ ≥ γ.

In case (i), first observe that G(γ) ≥ 0 for all γ; this follows from G(γ) = 0 (Lemma 5 part

(a)(i)), G′(γ) ≤ 0 (Lemma 5 part (b)(i)), and G convex (Lemma 5 part (e)(i)). In particular,

G(γ̂) ≥ 0. So by Lemma 5 part (c), it must hold that H(γ̂) ≤ 0. Therefore, continuity of H

4Note that the maintained assumption that F has full support on Γ allows for the possibility that f(γ) = 0,
and hence that G′(γ) = 0 (Lemma 5 part (b)(i)). This is why we appealed directly to (12) to establish that
there exists a point γ < γ with G(γ) < 0. Having established that fact, though, we can actually rule out
f(γ) = 0 under the assumptions of the Lemma. In particular, the combination of G(γ) = 0; the existence of
a point γ < γ with G(γ) < 0; and convexity of G, together imply that G′(γ) > 0 and thus that f(γ) > 0.

5Analogously to footnote 4 in the proof of Lemma 2, the assumptions of the Lemma imply that H ′(γ) > 0
and thus that f(γ) = 0.
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implies that there exists γL ∈ (γ, γ̂] such that H(γL) = 0, i.e., such that (Rc3) holds. Now

apply Proposition 1 of Amador and Bagwell (2013) to get that the interval allocation with

bounds γL, γ is optimal: (c1) is implied by (Gc1), (c2) holds vacuously, (c2′) by assumption,

(c3) by (Rc3) and Lemma 7 part (ii), (c3′) vacuously.

In case (ii), (Rd2) and (Rd3) hold vacuously, and therefore (d2) and (d3) hold by Lemma

7. Now apply Proposition 1 of the current paper to get that the constant allocation π∗ is

optimal.

Proof of Lemma 4. It holds that H(γ) = G(γ) = 0. Moreover, there exists a point γ

arbitrarily close to γ such that H(γ) > 0 (by (13)), and a point γ arbitrarily close to γ such

that G(γ) < 0 (by (12)). Consider three cases:

(i) π∗ ≤ πf (γ), i.e., γ̂ ≤ γ.

(ii) π∗ ≥ πf (γ), i.e., γ̂ ≥ γ.

(iii) π∗ ∈ (πf (γ), πf(γ)), in which case G(γ) > 0 and H(γ) < 0 (by Lemma 5 part (d)).

In cases (i) and (ii), (Rd2) and (Rd3) hold vacuously, and therefore (d2) and (d3) hold by

Lemma 7. For either of these cases, apply Proposition 1 of the current paper to get that the

constant allocation π∗ is optimal.

Finally, consider case (iii). By continuity, there must be some γL and γH in (γ, γ) such

that H(γL) = G(γH) = 0. By concavity of H , it holds that H(γ) > 0 for all γ ∈ (γ, γL)

and H(γ) < 0 for all γ ∈ (γL, γ]. Likewise, by convexity of G, it holds that G(γ) > 0 for all

γ ∈ [γ, γH) and G(γ) < 0 for all γ ∈ (γH , γ). In other words, for γ < min{γL, γH}, it holds

that H(γ) ≥ 0 and G(γ) > 0, so H(γ) +G(γ) > 0. Hence, from Lemma 5 part (c), for any

γ < min{γL, γH} it holds that π∗ > πf (γ), i.e., that γ̂ > γ. Similarly, for γ > min{γL, γH}

it holds that H(γ) + G(γ) < 0, and thus that π∗ < πf (γ), i.e., that γ̂ < γ. Putting these

observations together, γ̂ ∈ [min{γL, γH},max{γL, γH}].

Now consider two possibilities in case (iii). The first possibility is that γL < γH . Then

we can apply Proposition 1 of Amador and Bagwell (2013) to get that the interval allocation

with bounds γL, γH is optimal: (c1) is implied by (Gc1), (c2) holds by (Rc2) and Lemma 7

part (i), (c2′) holds vacuously, (c3) holds by (Rc3) and Lemma 7 part (ii), and (c3′) holds

vacuously.

The second possibility is that γL ≥ γH. Then π∗ ∈ [πf (γH), πf(γL)] or, in other words,

γ̂ ∈ [γH , γL]. We have that (Rd2) holds because γ̂ ≥ γH , and G(γ) ≤ 0 for any γ ≥ γH ; and

(Rd3) holds because γ̂ ≤ γL, and H(γ) ≥ 0 for any γ ≤ γL. We can now apply Proposition

1 of the current paper to get that the constant allocation at π∗ is optimal: (d2) holds by

(Rc2) and Lemma 7 part (i), and (d3) holds by (Rd3) and Lemma 7 part (ii).
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