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Abstract In this note we extend the Amador and Bagwell (Econometrica 81:1541-
1599, 2013) conditions for confirming the optimality of a proposed interval delegation
set to the possibility of degenerate intervals, in which the agent takes the same action
at every state. We consider the cases of money burning as well as no money burning.
These results allow us to provide new sufficient conditions on utility functions and state
distributions to guarantee that some interval—degenerate or non-degenerate—will be
optimal.
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1 Introduction

In a standard delegation problem, a state of the world determines both the principal’s
and agent’s preferences over a one-dimensional action (see, e.g., Holmstrom 1977).
The agent privately observes the state realization. The principal contracts with the
agent by giving her a set of actions from which to choose. The problem may also be
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augmented by “money burning,” an auxiliary action that hurts both players. A number
of papers provide conditions to guarantee that an interval delegation set is optimal,
and that—if money burning is available—no money is burned.! Such an interval may
take the form of a cap on the actions of an upward-biased agent; a floor on the actions
of a downward-biased agent; or a cap together with a floor, for an agent who takes
actions that are sometimes too high and sometimes too low.

In many ways the most general sufficient conditions for the optimality of interval
delegation, in terms of state distributions and utility functional form assumptions, come
from Proposition 1 of Amador and Bagwell (2013). That paper considers problems
both with and without money burning, and its utility functions embed those in earlier
papers. However, Amador and Bagwell (2013) lack two kinds of results that may be
important for readers. First, that paper does not consider degenerate intervals—single-
point delegation sets. Second, Amador and Bagwell (2013) find the optimal interval,
within the class of intervals, and then give conditions to verify that this proposed
interval is optimal within the full class of incentive compatible allocations. But for
some applications one might seek sufficient conditions for the optimality of some
interval, without first identifying the exact boundaries of that interval.

This note addresses both issues. We first extend the results of Amador and Bagwell
(2013) to present conditions for a proposed single point—a degenerate interval—to be
an optimal delegation set. We then give sufficiency conditions to guarantee that some
interval, degenerate or otherwise, must be optimal. It is enough to require that utility
functions are in a certain family, one capturing many of those used in the literature, and
that a global regularity condition jointly holds on the utilities and state distributions.

The two issues of degenerate intervals and global sufficiency conditions are inher-
ently linked. The distributional and functional form assumptions which are sufficient
to guarantee that some interval is optimal certainly can lead to a degenerate interval.
For instance, an agent with a positive bias relative to the principal should be given a
cap. But as the agent’s bias grows stronger, the cap is eventually made to be always-
binding. So one must address the possibility of degenerate intervals before moving to
global sufficiency conditions.

Section 2 presents the result concerning the optimality of degenerate delegation
intervals. Section 3 presents the sufficient conditions for the optimality of some interval
delegation. Section 4 contains the proof of Proposition 1. An online appendix collects
the rest of the proofs.

2 Optimality of degenerate delegation intervals

This paper considers the environment of Amador and Bagwell (2013), maintaining
Assumption 1 of that paper throughout. Repeating the key definitions and assumptions,
the principal’s utility is given by w(y, ) — t and the agent’s by y + b(;r) — t. The

I Without money burning, see for instance Melumad and Shibano (1991), Martimort and Semenov (2006),
and Alonso and Matouschek (2008). With money burning—captured, in the first two cases, via randomized
actions—see Goltsman et al. (2009), Kova¢ and Mylovanov (2009), and Amador and Bagwell (2013).
Ambrus and Egorov (2017) and Amador and Bagwell (2016) study related delegation problems in which
the optimal policy may in fact involve some form of money burning incentive.
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value y € I' = [y, y] represents the state of the world, drawn from a distribution F
with continuous density function f and with full support over I'.Z The action is 7 € I,
where IT is an interval of the real line with nonempty interior, with inf IT normalized
to 0 and sup IT = 7 (possibly infinite). The agent’s preferred, or “flexible,” action at
state y is indicated by 7 7 (y). Finally, ¢ > 0 is the level of money burning.

Assumption 1 The following hold: (i) the function w: I x IT — R is continuous
on I' x IT; (ii) for any yp € I', the function w(yyp, -) is concave on IT and twice
differentiable on (0, 7); (iii) the function b: IT — R is strictly concave on I1, and
twice differentiable on (0, 77); (iv) there exists a twice differentiable functionw s : I' —
(0, ) such that, for all yg € T, n}(yo) > 0and 7 (yp) € argmaxzen{yom +b(w)};
and (v) the function w;: I' x (0,7) — R is continuous on I' x (0, ), where wy
denotes the derivative of w in its second argument.

The principal chooses an allocation rule 7 : I' — IT and a transferrule ¢: ' — R
such that the agent, who privately observes the state, finds it incentive-compatible to
report the state truthfully. We denote a pair (i, ¢) as an allocation. We consider two
different problems:

e The problem with money burning is defined to be:
max/F (w(y,m(y)) —t(y))dF(y) subject to: P)
y € argr)glggc lyr@) +b(x(7)) —t(p)}, forally eT
t(y) =0, Vyerl
e The problem without money burning is Problem (P) with the additional constraint:
t(y)=0, VyeTl. (1

Just as in Amador and Bagwell (2013), a key parameter is «, which will be defined as

Wrr (Y, )

K = in
(y,m)el xII { b ()

} , for the problem without money burning, 2)

Kk = min inf M ,1¢, for the problem with money burning.
(y.m)elxII b ()
3)

A constant allocation is an allocation such that () is a constant function, and
t(y) =0, Yy € I'. The optimal allocation within the class of constant allocations is
defined by a value 7 * that solves

n* € argmax, E; plw(y, 7)].

We make the following assumption about 7 *:

2 Amador and Bagwell (2013) impose the stronger assumption that f is strictly positive over I". But
Proposition 1 of that paper, the only result we will invoke, does not rely on strict positivity of f.
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Assumption 2 7% is in the interior of the action space IT.

The value 7* can, therefore, be characterized as a solution to the first-order condi-
tion:

2
/ wr (7.7 f()dF = 0. @)
Y

Define 7 € R as follows:
7y =—=b'(1"). Q)

For any y € T, the first-order condition defining the agent’s preferred action,
wr(y),isy = =b'(ms(y)). Soif y € ', then p is the state at which the agent’s ideal
point is 7*: p = —b' (¢ (9)), implying 7 s (y) = 7*. However, it may be the case
that  lies outside the interval I", in which case 7 * does not correspond to the agent’s
ideal point for any state. It holds that (i) y € T if and only if 7* € [n¢(y), 7 s (¥)],
and (ii) y is strictly increasing in 7 *.

Now define two conditions, (d2) and (d3), that will, for degenerate intervals, play
the role of (c2) and (c3) from Amador and Bagwell (2013) for nondegenerate intervals:

@) Ifyp <7,

Mdf, Vy > ypinT.

v
(y = vk z/y wx (Y. 7)1 —FO)

(d3) Ify >y,

== [ wnx LB, vy <pinr
y E(y)
Amador and Bagwell (2013) had three other conditions that one might need to check:
(cl), (¢2'), and (c3’). Condition (c1) was relevant only for the interior of a delegation
set, and conditions (¢2) and (c3’) applied to the non-binding edges of an interval;
these conditions will not be relevant for degenerate intervals.
We now present one of our main results:

Proposition 1 Optimality of degenerate intervals—sufficiency:

(a) (No money burning) If conditions (d2) and (d3) are satisfied with « as defined in
(2), then the constant allocation 7w* solves the problem without money burning,
that is, Problem (P) with the additional constraint (1).

(b) (Money burning) If conditions (d2) and (d3) are satisfied with k as defined in (3),

then the constant allocation 7* solves Problem (P).

One can break the results into three cases. First, we may have y < y, which
implies 7 < 7 ¢ (y) because b is concave. In this case we need only check (d2). That
corresponds to a degenerate cap for an agent with a strong upward bias. In particular,
the agent’s ideal point satisfies m¢(y) > n* for all y € I'. Second, we may have
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y>y,ie,n*>nx £(¥), in which case we need only check (d3). That corresponds
to a degenerate floor for an agent with a strong downward bias: 7 ¢(y) < 7™ for all
y € I'. Finally, y may be interior in I', i.e., 7* € (7w (y), w¢(¥)), in which case we
need to check both (d2) and (d3).

3 Sufficiency conditions for some interval to be optimal

While (c1) in Amador and Bagwell (2013) was not relevant for checking the opti-
mality of degenerate intervals, some version of (c1) will indeed become relevant for
confirming that some interval—degenerate or otherwise—is optimal. Let (Gcl) indi-
cate global (cl), that is, a strengthening of condition (c1) to apply to all y € I" rather
y in some specified interval.

(Gel) «F(y) — we(y, mr(y)) f(y) is nondecreasing over y € I'.

We now show that (Gecl) combined with a functional form assumption on w implies
that some interval is optimal. Specifically, consider the functional form

w(y, ) =Alb(m)+ B(y) + C(y)m] with A > 0. (6)

When there is no money burning, the value of A can be set to 1 without loss of
generality. As shown by Amador and Bagwell (2013), this preference specification
encompasses several prominent specifications found in the literature.’

With w of the form (6), the value of k given by (2), without money burning, is A.
The value of « given by (3), with money burning, is min{A, 1}. When we consider
money burning below, we make the additional assumption that A < 1, in which case
k = A. Moreover, Assumption 1(iii) states that b is strictly concave, and hence w is
strictly concave in 7w (Assumption 1(ii) had only imposed weak concavity). Therefore,
7% € argmax,; E;p[w(y, w)] will be uniquely defined.

Recall that wy (y, 7w s (y)) gives the agent’s bias at state y : a negative value indicates
that the agent is biased upwards relative to the principal, and a positive value that the
agent is biased downwards. In what follows below, we present four lemmas that cover
the two-by-two exhaustive cases of an upwards or downwards bias at the lowest state;
and an upwards or downwards bias at the highest state.

For the following Lemmas, given y;, < yy in ', an interval allocation with bounds
yL, yu refers to a nondegenerate interval delegation set in which the agent can select
any action in the range [ ¢ (L), 7y (yn)], and there is no money burning:

Lemma 1 (Unconstrained interval) Let w be of the form (6). Suppose that (Gcl)
holds with k = A. Suppose that wy (y,mp(y)) =0 and wy (y, 7wy (y)) = 0. Then the

3 For example, the preferences assumed by Alonso and Matouschek (2008)—which does not allow for
money burning—are a special case. Restating that conclusion, the primary model of Alonso and Matouschek
(2008) proposes an agent utility function of v4 (7 —7 £ (¥), ), for v4 single-peaked and symmetric about 0
in its first term; a principal utility of —r(y ) (7 —7p (y))z, for r everywhere positive; and no money burning.
Without loss, they can transform the problem so that 77 ¢ () = y and r(y) = 1. Indeed, the agent’s behavior
given any delegation set is as if her utility function were ym + b(r) for b(w) = —72/2. The principal’s
utility can then be written as w(y, ) asin (6) with A = 1, C(y) = wp(y),and B(y) = 7(711:()/))2/2.
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solution to Problem (P) with additional constraint (1); or, under the further assumption
that A < 1, the solution to Problem (P); is given by the interval allocation with bounds
Y. V. Moreover, it holds that n*elmy ). @1

Lemma 2 (Cap) Let w be of the form (6). Suppose that (Gcl) holds with k = A.
Suppose that wy (y, ¢ (y)) < 0and wy (v, 7w (¥)) < 0. Then the solution to Prob-
lem (P) with additional constraint (1); or, under the further assumption that A < 1,
the solution to Problem (P); is as follows:

() Ifn* e (my (Z)’ 7 ¢ (¥)): The interval allocation with bounds Y. VH is optimal,

for some yy € [7,7).
(i) Ifn* <my (y): The constant allocation ™ is optimal.

It cannot hold that w* > 7w ¢ ().

Lemma 3 (Floor) Let w be of the form (6). Suppose that (Gel) holds with k =
A. Suppose that wy (v, ws(y)) > 0 and wy (Y, mws(y)) > 0. Then the solution to
Problem (P) with additional constraint (1); or, under the further assumption that
A <1, the solution to Problem (P); is as follows:

() Ifm* € (my (v), ¢ (¥)): The interval allocation with bounds yr, y is optimal,

for some yi, € (y, V1.
(i) If * = m¢(¥): The constant allocation w* is optimal.

It cannot hold that m* < my ()

Lemma 4 (Cap and Floor) Let w be of the form (6). Suppose that (Gcl) holds with
k = A. Suppose that wy(y, s (y)) > 0and wy;(y, 7y (¥)) < 0. Then the solution
to Problem (P) with additional constraint (1); or, under the further assumption that
A <1, the solution to Problem (P); is given by one of the following cases:

(1) Theinterval allocation with bounds yy,, yy is optimal, for some yr, yy satisfying
Y <YL <yu <7.Inthis case it must hold that n* e me(yL), me(ym)l
(ii) The constant allocation 7™ is optimal.

The proofs of these lemmas build off of an argument in Amador and Bagwell (2016,
Lemma 1). Under the functional form assumption (6), rather than checking (c2), (c3),
(d2) and (d3) over an interval, condition (Gcl) allows us to check the conditions
just at the boundary point. As we explain in the proofs, a related argument is devel-
oped by Alonso and Matouschek (2008). For the payoffs that they consider, condition
(Gcl) implies the convexity or concavity of their “forward bias” and “backward bias”
expressions (which play an important role in their argument).

Lemma 1 gives conditions for the optimality of an unconstrained delegation interval,
with no binding cap or floor. This occurs when the agent is “more moderate” than the
principal, being biased towards higher actions at the lowest state and lower actions at
the highest state. Lemma 2 gives conditions for a cap, possibly binding for only some
states (part (i)) and possibly degenerate and binding for all states (part (ii)). This occurs
when the agent is biased upwards at the lowest and highest states. When the cap is not
always binding (part (iii)), the cap is above the principal’s ex ante optimal action 7 *.
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Lemma 3 gives similar conditions for a floor, when the agent is biased downwards at
the lowest and highest states.

Lemma 4 gives conditions for interval delegation in the remaining case, in which
the agent is biased downwards at the lowest state and upwards at the highest state.
This can be thought of as an “extreme-biased” agent, although it is also consistent
with simple misalignment of preferences: the principal’s ideal point may be falling
over some range of states as the agent’s ideal point rises. Part (i) describes the case of
a floor combined with a cap, where the floor is strictly below the cap. Part (ii) actually
combines multiple cases. It may be that 7* < m¢(y), in which case the contract is
an always-binding cap. It may be that 7* > 7 (¥), in which case the contract is an
always-binding floor. Or it may be that 7* is in between 7 () and 7 7 (¥), in which
case the contract can be thought of as a cap and a floor set at the same point.

Putting together these four lemmas:

Proposition 2 Let w be of the form (6). Suppose that (Gel) holds with k = A.

(a) (No money burning) Then the solution to Problem (P) with additional constraint
(1) is given by some interval delegation set, possibly degenerate.

(b) (Money burning) Suppose also that A < 1. Then the solution to Problem (P) is
given by some interval delegation set, possibly degenerate.

4 Proof of Proposition 1

We follow closely the proof of Proposition 1 in Amador and Bagwell (2013). The main
difference is the proposed Lagrange multipliers, as in this case we are allowing for the
possibility that the optimal allocation involves no flexibility. Once these multipliers
have been found, the steps of the proof are identical. See Amador and Bagwell (2013)

for a more detailed discussion of these steps. We will prove each of the parts of this
Proposition separately.

Proof of part (a) of Proposition 1: without money burning

We first write the incentive constraints in their usual monotonicity restriction plus an
integral form. Just as in Amador and Bagwell (2013), we write the integral form as
two inequalities:

/V a(y)dy +U —ym(y) —b(m(y)) <0, forally €T, @)
|4
Y
—/ m(y)dy —U +yn(y)+bm(y)) <0, forally eT, ®
|4

where U = yn(y) + b(m(y)).

The problem is then to choose a function ¥ € ® so as to maximize
max / w(y, m(y))dF(y)
m: =TI
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subject to (7) and (8) and where the choice set incorporates the monotonicity restric-
tion: ® = {m|w: I — Il and & non-decreasing}.

We then assign cumulative Lagrange multiplier functions A | and A, to constraints
(7) and (8), respectively, and write the Lagrangian for the problem and after integrating
by parts we obtain

L(m|A) = /F[w(y,n(y))f(y) —(A(Y) = A(y)m(y)ldy
+/r(yn(7/) +b(m(y))dA(y) — U(AY) — A(p)),

where A(y) = A1(y) — Ax(y).

A proposed multiplier Let us propose some non-decreasing multipliers A and A> so
that their difference, A, satisfies:

1 Yy=Yv

l+k(1—=F@) vew: .y
Ay)=114+cd—=Fy*) y=y* and y* e (y,7),

1l —KkF(y) Yy €, v")

1 Yy=v

where « is given by (2) and y* = min {max{)?, y} , 7} € ' where 7 is given by (5).4
Note that A is well defined even when 7 lies outside [y, 7].

Below we show that k F(y) + A(y) = R(y) is non-decreasing; hence, it follows

that A(y) can indeed be written as the difference of two non-decreasing functions,
R(y) —kF(y).
Concavity of the Lagrangian The next step is to check that the Lagrangian is concave
when evaluated at the proposed multipliers. Towards this goal, we first note that the
jump at y* in A equals «, and thus is non-negative. Using that A(}) = A(y) = 1,
we can write the Lagrangian as follows: N

L(|A) = fr[w(y, w(y)) —k(ym(y) + b (y))N1f(y)dy — fr(l — Ay)m(y)dy

+ /r () + b (PACF W) + AG)). ©

The concavity of w(y, m(y)) — kb(m(y)) in w(y) follows from the definition of
k. The fact that its jump at ™ is non-negative implies that « F(y) + A(y) is non-
decreasing.
Maximizing the Lagrangian We now proceed to show that the proposed allocation 7z *
maximizes the Lagrangian.

4 Here we use the convention that the open interval (x, x) corresponds to the empty set, .
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As in Amador and Bagwell (2013), we extend b and w to the entire positive ray of

the real line. Denoting ® = {x|xr: ' — R4 and & non-decreasing}, we can say that
if

AL(m*; m*|A) =0,
AL(T*; x|A) <0; forallx € ,

then 7 * maximizes the Lagrangian L.
For our problem, taking the Gateaux differential in direction x € ®. we get that:

ac(n*;xm)=/F[wnw,n*)f(y)—(l—A(y»]x(y)dy
a
[ - 9)x00dam) (10)
y

which can be rewritten as

*

DL(": x|A) =f [wr (. 7 £ (1) — K F () — k(y — ) F )] 20y

Y

2
+ / [wr(y. 7 F () + k(1 = F(r)) — k(y — ) f ()] x(3)dy
y*
+r(y* —pP)x(y™

Integrating by parts, we have

*

Y
AL(T™; x|A) = x(y*){ / [wr (v, T f(y) =k F(y) —k(y — ) f(y)]dy
)4

V2
+/ [wr (V. T f) + 6L = F(y)) —k(y = ) f ()] dy +k(y* — )7)}
V*

*

Y Y
- / [ / [we G T F ) — kFG) — kG — P £ )] d?}dx(y)
Y y

Y
+/ [/ [we G T F ) + k(1 = FG)) — k(G — 1G] d?]dx(y)-
y* y
(11)

=

We require that this differential be non-positive for all non-decreasing x and zero when
evaluated at x = r*. Note that if x = x*, then dx(y) = 0. So we have that

5 Existence of the Gateaux differentials and the ability to integrate by parts follows from identical arguments
to those in footnotes 52 and 53 of Amador and Bagwell (2013).
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*

Y
AL(T™; T¥|A) = 7™ {/ [wr (. 7*) f(y) = F(y) —x(y — ) f ()] dy
v
7
+/ [we (. 75 f () + k(L= F2) — k(y — 9)F ()] dy
y*
+r(y* — )7)}

4
= Kﬂ*|:f [-F() —rf(»]dy +7} =0,
Y

where the last equality follows from (4) and the identity fah yf(y)dy = bF(b) —

b
aF(a)— [ F(y)dy.
To guarantee that d L(r*; x|A) < 0 for all x € ®, we need that

Y

f [wr (7, 7 £ ) = € FG) — kG = ) f )] d7 = 0 forall y € [y, 7*)

Y
2

/ [we (7, 7 £ ) + k(L = FG) — k(G — ) f)] <0 forally € (%, 71,
Y

where this follows by noticing dL(x*; t*|A) = 0 implies that the term in curly
brackets in Eq. (11) equals zero.
These conditions in turn are implied by (d2) and (d3). To see, note that

Y
[ e G715 ) = kP @) = k7 = 7147
v
y ~ ~ ~ A
= / we (7, 7) (7)Y —k(y = PIF(y)
v
And thus (d3), together with the definition of y*, implies that
y ~ ~ ~ ~ A ~ ~
[ Te x5 ) = kP @) = k7 = P FG] 47 20 forally € Ly, )
v
A similar argument shows that (d2) implies

2
/ [wz G 7 f(7) 41l — FG) — (7 — 9)f()] <0 forall y € (v*, 7]
Y

Hence, using concavity of Lagrangian plus Lemma A.2 in Amador et al. (2006),
we have shown that the proposed allocation 7* maximizes the Lagrangian given the
multipliers.
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Applying Luenberger’s sufficiency theorem Just as in Amador and Bagwell (2013),
we then apply Theorem 1 in their appendix to show that 7* is an optimal solution of
the original problem.

Proof of part (b) of Proposition 1: with money burning

The proof of part (b) follows the same steps as in Amador and Bagwell (2013), but
this time with the multiplier given by

1 Y=Y
AI=)Fy)+«c yvewy)
Ay =10 =KFyH+x y=yp* and y* € (y.7)
(1 —K)F(y) y e, v
0 Y=Y

where « is given by definition (3), and y* = min{max{y, y}, 7} € T where 7 is given
by (5). o
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